Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 10(6)2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34070323

RESUMEN

Staphylococcus aureus (S. aureus) is an aggressive opportunistic pathogen of prominent virulence and antibiotic resistance. These characteristics are due in part to the accessory gene regulator (agr) quorum-sensing system, which allows for the rapid adaptation of S. aureus to environmental changes and thus promotes virulence and the development of pathogenesis. AgrA is the agr system response regulator that binds to the P2 and P3 promoters and upregulates agr expression. In this study, we reveal that S. aureus AgrA is modified by covalent binding of CoA (CoAlation) in response to oxidative or metabolic stress. The sites of CoAlation were mapped by liquid chromatography tandem mass spectrometry (LC-MS/MS) and revealed that oxidation-sensing Cys199 is modified by CoA. Surface plasmon resonance (SPR) analysis showed an inhibitory effect of CoAlation on the DNA-binding activity, as CoAlated AgrA had significantly lower affinity towards the P2 and P3 promoters than non-CoAlated AgrA. Overall, this study provides novel insights into the mode of transcriptional regulation in S. aureus and further elucidates the link between the quorum-sensing and oxidation-sensing roles of the agr system.

2.
Int J Mol Sci ; 22(3)2021 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-33498827

RESUMEN

Coenzyme A (CoA) is an essential cofactor present in all living cells. Under physiological conditions, CoA mainly functions to generate metabolically active CoA thioesters, which are indispensable for cellular metabolism, the regulation of gene expression, and the biosynthesis of neurotransmitters. When cells are exposed to oxidative or metabolic stress, CoA acts as an important cellular antioxidant that protects protein thiols from overoxidation, and this function is mediated by protein CoAlation. CoA and its derivatives are strictly maintained at levels controlled by nutrients, hormones, metabolites, and cellular stresses. Dysregulation of their biosynthesis and homeostasis has deleterious consequences and has been noted in a range of pathological conditions, including cancer, diabetes, Reye's syndrome, cardiac hypertrophy, and neurodegeneration. The biochemistry of CoA biosynthesis, which involves five enzymatic steps, has been extensively studied. However, the existence of a CoA biosynthetic complex and the mode of its regulation in mammalian cells are unknown. In this study, we report the assembly of all five enzymes that drive CoA biosynthesis, in HEK293/Pank1ß and A549 cells, using the in situ proximity ligation assay. Furthermore, we show that the association of CoA biosynthetic enzymes is strongly upregulated in response to serum starvation and oxidative stress, whereas insulin and growth factor signaling downregulate their assembly.


Asunto(s)
Vías Biosintéticas/genética , Coenzima A/metabolismo , Regulación de la Expresión Génica , Estrés Oxidativo , Células A549 , Coenzima A/biosíntesis , Células HEK293 , Humanos , Insulina/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Transducción de Señal
3.
FEMS Microbiol Lett ; 367(23)2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33206970

RESUMEN

Spores of Bacillus species have novel properties, which allow them to lie dormant for years and then germinate under favourable conditions. In the current work, the role of a key metabolic integrator, coenzyme A (CoA), in redox regulation of growing cells and during spore formation in Bacillus megaterium and Bacillus subtilis is studied. Exposing these growing cells to oxidising agents or carbon deprivation resulted in extensive covalent protein modification by CoA (termed protein CoAlation), through disulphide bond formation between the CoA thiol group and a protein cysteine. Significant protein CoAlation was observed during sporulation of B. megaterium, and increased largely in parallel with loss of metabolism in spores. Mass spectrometric analysis identified four CoAlated proteins in B. subtilis spores as well as one CoAlated protein in growing B. megaterium cells. All five of these proteins have been identified as moderately abundant in spores. Based on these findings and published studies, protein CoAlation might be involved in facilitating establishment of spores' metabolic dormancy, and/or protecting sensitive sulfhydryl groups of spore enzymes.


Asunto(s)
Bacillus/metabolismo , Coenzima A/metabolismo , Cisteína/metabolismo , Esporas Bacterianas/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Bacillus/citología , Proteínas Bacterianas/metabolismo , Disulfuros/química , Disulfuros/metabolismo
4.
Redox Biol ; 28: 101318, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31546169

RESUMEN

Aurora A kinase is a master mitotic regulator whose functions are controlled by several regulatory interactions and post-translational modifications. It is frequently dysregulated in cancer, making Aurora A inhibition a very attractive antitumor target. However, recently uncovered links between Aurora A, cellular metabolism and redox regulation are not well understood. In this study, we report a novel mechanism of Aurora A regulation in the cellular response to oxidative stress through CoAlation. A combination of biochemical, biophysical, crystallographic and cell biology approaches revealed a new and, to our knowledge, unique mode of Aurora A inhibition by CoA, involving selective binding of the ADP moiety of CoA to the ATP binding pocket and covalent modification of Cys290 in the activation loop by the thiol group of the pantetheine tail. We provide evidence that covalent CoA modification (CoAlation) of Aurora A is specific, and that it can be induced by oxidative stress in human cells. Oxidising agents, such as diamide, hydrogen peroxide and menadione were found to induce Thr 288 phosphorylation and DTT-dependent dimerization of Aurora A. Moreover, microinjection of CoA into fertilized mouse embryos disrupts bipolar spindle formation and the alignment of chromosomes, consistent with Aurora A inhibition. Altogether, our data reveal CoA as a new, rather selective, inhibitor of Aurora A, which locks this kinase in an inactive state via a "dual anchor" mechanism of inhibition that might also operate in cellular response to oxidative stress. Finally and most importantly, we believe that these novel findings provide a new rationale for developing effective and irreversible inhibitors of Aurora A, and perhaps other protein kinases containing appropriately conserved Cys residues.


Asunto(s)
Aurora Quinasa A/química , Aurora Quinasa A/metabolismo , Coenzima A/administración & dosificación , Animales , Coenzima A/química , Coenzima A/farmacología , Cristalografía por Rayos X , Células HEK293 , Células Hep G2 , Humanos , Ratones , Modelos Moleculares , Estrés Oxidativo , Fosforilación , Conformación Proteica , Huso Acromático/efectos de los fármacos , Huso Acromático/metabolismo
5.
Mol Cell Biochem ; 461(1-2): 91-102, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31375973

RESUMEN

Peroxiredoxins (Prdxs) are antioxidant enzymes that catalyse the breakdown of peroxides and regulate redox activity in the cell. Peroxiredoxin 5 (Prdx5) is a unique member of Prdxs, which displays a wider subcellular distribution and substrate specificity and exhibits a different catalytic mechanism when compared to other members of the family. Here, the role of a key metabolic integrator coenzyme A (CoA) in modulating the activity of Prdx5 was investigated. We report for the first time a novel mode of Prdx5 regulation mediated via covalent and reversible attachment of CoA (CoAlation) in cellular response to oxidative and metabolic stress. The site of CoAlation in endogenous Prdx5 was mapped by mass spectrometry to peroxidatic cysteine 48. By employing an in vitro CoAlation assay, we showed that Prdx5 peroxidase activity is inhibited by covalent interaction with CoA in a dithiothreitol-sensitive manner. Collectively, these results reveal that human Prdx5 is a substrate for CoAlation in vitro and in vivo, and provide new insight into metabolic control of redox status in mammalian cells.


Asunto(s)
Coenzima A/metabolismo , Peroxirredoxinas/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Análisis Mutacional de ADN , Células HEK293 , Humanos , Masculino , Oxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Peroxidasa/metabolismo , Ratas Sprague-Dawley , Ratas Wistar , Estrés Fisiológico/efectos de los fármacos
6.
Biochem Biophys Res Commun ; 511(2): 294-299, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30797553

RESUMEN

Dictyostelium discoideum (D. discoideum) is a simple eukaryote with a unique life cycle in which it differentiates from unicellular amoebae into a fruiting body upon starvation. Reactive oxygen species (ROS) have been associated with bacterial predation, as well as regulatory events during D. discoideum development and differentiation. Coenzyme A (CoA) is a key metabolic integrator in all living cells. A novel function of CoA in redox regulation, mediated by covalent attachment of CoA to cellular proteins in response to oxidative or metabolic stress, has been recently discovered and termed protein CoAlation. In this study, we report that the level of CoA and protein CoAlation in D. discoideum are developmentally regulated, and correlate with the temporal expression pattern of genes implicated in CoA biosynthesis during morphogenesis. Furthermore, treatment of growing D. discoideum cells with oxidising agents results in a dose-dependent increase of protein CoAlation. However, much higher concentrations were required when compared to mammalian cells and bacteria. Increased resistance of D. discoideum to oxidative stress induced by H2O2 has previously been attributed to high levels of catalase activity. In support of this notion, we found that H2O2-induced protein CoAlation is significantly increased in CatA-deficient D. discoideum cells. Collectively, this study provides insights into the role of CoA and protein CoAlation in the maintenance of redox homeostasis in amoeba and during D. discoideum morphogenesis.


Asunto(s)
Coenzima A/metabolismo , Dictyostelium/crecimiento & desarrollo , Estrés Oxidativo , Proteínas Protozoarias/metabolismo , Dictyostelium/citología , Dictyostelium/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Morfogénesis , Oxidación-Reducción , Procesamiento Proteico-Postraduccional , Infecciones por Protozoos/parasitología , Especies Reactivas de Oxígeno/metabolismo
7.
Biochem J ; 475(11): 1909-1937, 2018 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-29626155

RESUMEN

In all living organisms, coenzyme A (CoA) is an essential cofactor with a unique design allowing it to function as an acyl group carrier and a carbonyl-activating group in diverse biochemical reactions. It is synthesized in a highly conserved process in prokaryotes and eukaryotes that requires pantothenic acid (vitamin B5), cysteine and ATP. CoA and its thioester derivatives are involved in major metabolic pathways, allosteric interactions and the regulation of gene expression. A novel unconventional function of CoA in redox regulation has been recently discovered in mammalian cells and termed protein CoAlation. Here, we report for the first time that protein CoAlation occurs at a background level in exponentially growing bacteria and is strongly induced in response to oxidizing agents and metabolic stress. Over 12% of Staphylococcus aureus gene products were shown to be CoAlated in response to diamide-induced stress. In vitro CoAlation of S. aureus glyceraldehyde-3-phosphate dehydrogenase was found to inhibit its enzymatic activity and to protect the catalytic cysteine 151 from overoxidation by hydrogen peroxide. These findings suggest that in exponentially growing bacteria, CoA functions to generate metabolically active thioesters, while it also has the potential to act as a low-molecular-weight antioxidant in response to oxidative and metabolic stress.


Asunto(s)
Antioxidantes/metabolismo , Proteínas Bacterianas/metabolismo , Coenzima A/metabolismo , Staphylococcus aureus/metabolismo , Proteínas Bacterianas/genética , Coenzima A/genética , Diamida/farmacología , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Oxidación-Reducción , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética
8.
Biochem J ; 474(14): 2489-2508, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28341808

RESUMEN

Coenzyme A (CoA) is an obligatory cofactor in all branches of life. CoA and its derivatives are involved in major metabolic pathways, allosteric interactions and the regulation of gene expression. Abnormal biosynthesis and homeostasis of CoA and its derivatives have been associated with various human pathologies, including cancer, diabetes and neurodegeneration. Using an anti-CoA monoclonal antibody and mass spectrometry, we identified a wide range of cellular proteins which are modified by covalent attachment of CoA to cysteine thiols (CoAlation). We show that protein CoAlation is a reversible post-translational modification that is induced in mammalian cells and tissues by oxidising agents and metabolic stress. Many key cellular enzymes were found to be CoAlated in vitro and in vivo in ways that modified their activities. Our study reveals that protein CoAlation is a widespread post-translational modification which may play an important role in redox regulation under physiological and pathophysiological conditions.


Asunto(s)
Coenzima A/metabolismo , Proteínas/metabolismo , Animales , Cisteína/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Riñón/metabolismo , Hígado/metabolismo , Masculino , Miocardio/metabolismo , Especificidad de Órganos , Oxidación-Reducción , Estrés Oxidativo , Procesamiento Proteico-Postraduccional , Conejos , Ratas Sprague-Dawley , Compuestos de Sulfhidrilo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...