Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Physiol Heart Circ Physiol ; 294(4): H1823-32, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18245563

RESUMEN

The receptor for advanced glycation end-products (RAGE) has been implicated in the pathogenesis of ischemia-reperfusion (I/R) injury in the isolated perfused heart. To test the hypothesis that RAGE-dependent mechanisms modulated responses to I/R in a murine model of transient occlusion and reperfusion of the left anterior descending coronary artery (LAD), we subjected male homozygous RAGE(-/-) mice and their wild-type age-matched littermates to 30 min of occlusion of the LAD followed by reperfusion. At 48 h of reperfusion, hematoxylin and eosin staining revealed significantly larger infarct size in wild-type versus RAGE(-/-) mice. Contractile function, as evaluated by echocardiography 48 h after reperfusion, revealed that fractional shortening was significantly higher in RAGE(-/-) versus wild-type mice. Plasma levels of creatine kinase were markedly decreased in RAGE(-/-) versus wild-type animals. Integral to the impact of RAGE deletion on diminished myocardial damage after infarction was significantly decreased apoptosis in the heart, as assessed by TUNEL staining, release of cytochrome c, and caspase-3 activity. Experiments investigating the impact of RAGE on early signaling pathways influencing myocardial ischemic injury revealed attenuation of JNK and STAT5 phosphorylation in RAGE(-/-) mouse hearts versus robust activation observed in wild-type mice upon ischemia and reperfusion. Solidifying the link to RAGE, these experiments revealed that infarction stimulated the rapid production of advanced glycation end-products in the heart. Thus, we tested the effect of ligand decoy soluble RAGE (sRAGE). Administration of sRAGE protected the myocardium from ischemic damage, similar to the effects observed in RAGE(-/-) mouse hearts. Taken together, these data implicate RAGE and its ligands in the pathogenesis of I/R injury and identify JNK and STAT signal transduction as central downstream effector pathways of the ligand-RAGE axis in the heart subjected to I/R injury.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Infarto del Miocardio/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocardio/metabolismo , Receptores Inmunológicos/metabolismo , Factor de Transcripción STAT5/metabolismo , Transducción de Señal , Animales , Apoptosis , Vasos Coronarios/cirugía , Forma MB de la Creatina-Quinasa/sangre , Modelos Animales de Enfermedad , Activación Enzimática , Productos Finales de Glicación Avanzada/metabolismo , Ligandos , Ligadura , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Contracción Miocárdica , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Miocardio/enzimología , Miocardio/patología , Fosforilación , Receptor para Productos Finales de Glicación Avanzada , Receptores Inmunológicos/deficiencia , Receptores Inmunológicos/genética , Factores de Tiempo
2.
Circulation ; 113(9): 1226-34, 2006 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-16505177

RESUMEN

BACKGROUND: The beneficial effects of reperfusion therapies have been limited by the amount of ischemic damage that occurs before reperfusion. To enable development of interventions to reduce cell injury, our research has focused on understanding mechanisms involved in cardiac cell death after ischemia/reperfusion (I/R) injury. In this context, our laboratory has been investigating the role of the receptor for advanced-glycation end products (RAGE) in myocardial I/R injury. METHODS AND RESULTS: In this study we tested the hypothesis that RAGE is a key modulator of I/R injury in the myocardium. In ischemic rat hearts, expression of RAGE and its ligands was significantly enhanced. Pretreatment of rats with sRAGE, a decoy soluble part of RAGE receptor, reduced ischemic injury and improved functional recovery of myocardium. To specifically dissect the impact of RAGE, hearts from homozygous RAGE-null mice were isolated, perfused, and subjected to I/R. RAGE-null mice were strikingly protected from the adverse impact of I/R injury in the heart, as indicated by decreased release of LDH, improved functional recovery, and increased adenosine triphosphate (ATP). In rats and mice, activation of the RAGE axis was associated with increases in inducible nitric oxide synthase expression and levels of nitric oxide, cyclic guanosine monophosphate (cGMP), and nitrotyrosine. CONCLUSIONS: These findings demonstrate novel and key roles for RAGE in I/R injury in the heart. The findings also demonstrate that the interaction of RAGE with advanced-glycation end products affects myocardial energy metabolism and function during I/R.


Asunto(s)
Isquemia Miocárdica/patología , Daño por Reperfusión Miocárdica/patología , Receptores Inmunológicos/fisiología , Animales , GMP Cíclico/análisis , Metabolismo Energético , Masculino , Ratones , Ratones Noqueados , Isquemia Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Óxido Nítrico/análisis , Óxido Nítrico Sintasa de Tipo II/análisis , Ratas , Receptor para Productos Finales de Glicación Avanzada , Receptores Inmunológicos/deficiencia , Tirosina/análogos & derivados , Tirosina/análisis , Regulación hacia Arriba
3.
FASEB J ; 18(11): 1192-9, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15284219

RESUMEN

Aldose reductase (AR), a member of the aldo-keto reductase family, has been implicated in the development of vascular and neurological complications of diabetes. Recently, we demonstrated that aldose reductase is a component of myocardial ischemic injury and that inhibitors of this enzyme protect rat hearts from ischemia-reperfusion injury. To rigorously test the effect of aldose reductase on myocardial ischemia-reperfusion injury, we used transgenic mice broadly overexpressing human aldose reductase (ARTg) driven by the major histocompatibility complex I promoter. Hearts from these ARTg or littermate mice (WT) (n=6 in each group) were isolated, perfused under normoxic conditions, then subjected to 50 min of severe low flow ischemia followed by 60 min of reperfusion. Creatine kinase (CK) release (a marker of ischemic injury) was measured during reperfusion; left ventricular developed pressure (LVDP), end diastolic pressure (EDP), and ATP were measured throughout the protocol. CK release was significantly greater in ARTg mice compared with the WT mice. LVDP recovery was significantly reduced in ARTg mice compared with the WT mice. Furthermore, ATP content was higher in WT mice compared with ARTg mice during ischemia and reperfusion. Infarct size measured by staining techniques and myocardial damage evaluated histologically were also significantly worse in ARTg mice hearts than in controls. Pharmacological inhibition of aldose reductase significantly reduced ischemic injury and improved functional recovery in ARTg mice. These data strongly support key roles for AR in ischemic injury and impairment of functional and metabolic recovery after ischemia. We propose that interventions targeting AR may provide a novel adjunctive approach to protect ischemic myocardium.


Asunto(s)
Aldehído Reductasa/fisiología , Isquemia Miocárdica/enzimología , Daño por Reperfusión Miocárdica/enzimología , Adenosina Trifosfato/metabolismo , Aldehído Reductasa/antagonistas & inhibidores , Aldehído Reductasa/biosíntesis , Aldehído Reductasa/genética , Animales , Vasos Coronarios , Citosol/metabolismo , Inhibidores Enzimáticos/farmacología , Glucosa/metabolismo , Glucólisis , L-Iditol 2-Deshidrogenasa/farmacología , Ligadura , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Isquemia Miocárdica/patología , Daño por Reperfusión Miocárdica/patología , Miocardio/metabolismo , NAD/metabolismo , Niacina/farmacología , Técnicas de Cultivo de Órganos , Oxidación-Reducción , Ácido Palmítico/metabolismo , Proteínas Recombinantes de Fusión/fisiología , Función Ventricular Izquierda
4.
Biol Neonate ; 84(4): 319-24, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-14593243

RESUMEN

Lipopolysaccharide (LPS) produces varied systemic metabolic effects. We studied the effects of LPS on the cardiac fatty acid profile and its relationship to energy metabolism and inflammatory mediators that included TNF-alpha and nitric oxide synthase (NOS) in 10-day-old neonatal rat pups. Rat pups received an i.p. injection of LPS after a 4-hour starvation period, followed by collection of blood and cardiac tissue 4 h following LPS administration. Compared to controls, LPS induced significant hypoglycemia and hyperlactacidemia, suggesting the development of endotoxic shock. The result was a significant depression in total fatty acid levels as well as non-esterified fatty acid in the cardiac tissue of the LPS-treated pups. In addition, LPS-treated pups also showed a significant increase in TNF-alpha, NOS levels with a depressed redox state and energy metabolism in cardiac tissue. These observations suggest that endotoxic shock in 10-day-old rat pups induces a systemic inflammatory response with a depression in fatty acid metabolism that may contribute to myocardial failure.


Asunto(s)
Animales Recién Nacidos/metabolismo , Biomarcadores/análisis , Lipopolisacáridos/farmacología , Miocardio/química , Adenosina Trifosfato/análisis , Animales , Glucemia/metabolismo , Metabolismo Energético/efectos de los fármacos , Ácidos Grasos/análisis , Homeostasis/efectos de los fármacos , Hipoglucemia/inducido químicamente , Ácido Láctico/sangre , Miocardio/metabolismo , Óxido Nítrico Sintasa/análisis , Óxido Nítrico Sintasa de Tipo II , Estrés Oxidativo/efectos de los fármacos , Fosfocreatina/análisis , Ratas , Ratas Sprague-Dawley , Salmonella enteritidis , Factor de Necrosis Tumoral alfa/análisis
5.
FASEB J ; 17(15): 2331-3, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14525943

RESUMEN

Sorbitol dehydrogenase (SDH) is a polyol pathway enzyme that catalyzes conversion of sorbitol to fructose. Recent studies have demonstrated that activation of aldose reductase, the first enzyme of the polyol pathway, is a key response to ischemia and that inhibition of aldose reductase reduces myocardial ischemic injury. In our efforts to understand the role of pathway in affecting metabolism under normoxic and ischemic conditions, as well as in ischemic injury in myocardium, we investigated the importance of SDH by use of a specific inhibitor (SDI), CP-470,711. SDH inhibition increased glucose oxidation, whereas palmitate oxidation remained unaffected. Global ischemia increased myocardial SDH activity by approximately 1.5 fold. The tissue lactate/pyruvate ratio, a measure of cytosolic NADH/NAD+, was reduced by SDH inhibition under both normoxic and ischemic conditions. ATP was higher in SDI hearts during ischemia and reperfusion. Creatine kinase release during reperfusion, a marker of myocardial ischemic injury, was markedly attenuated in SDH-inhibited hearts. These data indicate that myocardial SDH activation is a component of ischemic response and that interventions that inhibit SDH protect ischemic myocardium. Furthermore, these data identify SDH as a novel target for adjunctive cardioprotective interventions.


Asunto(s)
L-Iditol 2-Deshidrogenasa/antagonistas & inhibidores , Miocardio/enzimología , Animales , Cardiotónicos/uso terapéutico , Quimioterapia Adyuvante , Sistemas de Liberación de Medicamentos , Inhibidores Enzimáticos/uso terapéutico , Glucosa/metabolismo , Corazón/efectos de los fármacos , Modelos Cardiovasculares , Isquemia Miocárdica/enzimología , Isquemia Miocárdica/prevención & control , Miocardio/metabolismo , Técnicas de Cultivo de Órganos , Pirimidinas/uso terapéutico , Ratas
6.
Coron Artery Dis ; 13(6): 313-8, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12436025

RESUMEN

BACKGROUND: A number of experimental studies have shown that increasing glucose use or decreasing accumulation of long-chain acyl carnitines (LCAC) protect ischemic hearts. METHODS: To evaluate the relative importance of these two strategies in protecting ischemic myocardium, isolated rat hearts (n = 6 in each group) were paced at 300 bpm and subjected to 50 min of low-flow ischemia followed by 60 min of reperfusion. Buffer contained 0.4 m mol/l albumin, 0.4 m mol/l palmitate, and 70 mU/l insulin, and either normal glucose (5 m mol/l) (CON), high glucose (10 m mol/l total) (HG, known to increase glucose use), 5 m mol/l glucose and niacin (10 micromol/l) (NIA, known to increase glucose use and decrease LCAC) or carnitine (10 m mol/l) (CAR, known to increase glucose use and decrease LCAC). Separate groups of hearts were perfused in the presence of 10 micromol/l cytochalasin-B (CB), an inhibitor of insulin-sensitive glucose transporters. RESULTS: Ischemic injury, as assessed by creatine kinase (CK) release was diminished by an average of 50% in HG, NIA, and CAR hearts, and the percentage recovery of left ventricular (LV) function with reperfusion was enhanced by approximately 20% compared with CON hearts (P < 0.05 for each comparison). Cytochalasin-B abolished all of the salutary effects. Long-chain acyl carnitines levels were higher in HG hearts compared with NIA- and CAR-treated hearts ( P < 0.05), but ischemic protection and functional recovery was greater in HG hearts. CONCLUSIONS: The data support the adjunctive use of agents that promote glucose uptake during ischemia and suggest that increasing glucose use is more important than decreasing LCAC in the protection against ischemic injury or in the recovery of contractile function.


Asunto(s)
Carnitina/análogos & derivados , Carnitina/metabolismo , Glucosa/metabolismo , Isquemia Miocárdica/prevención & control , Isquemia Miocárdica/fisiopatología , Animales , Carnitina/farmacología , Creatina Quinasa/efectos de los fármacos , Creatina Quinasa/metabolismo , Citocalasina B/antagonistas & inhibidores , Modelos Animales de Enfermedad , Modelos Cardiovasculares , Contracción Miocárdica/efectos de los fármacos , Contracción Miocárdica/fisiología , Isquemia Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/fisiopatología , Daño por Reperfusión Miocárdica/prevención & control , Niacina/farmacología , Consumo de Oxígeno/efectos de los fármacos , Consumo de Oxígeno/fisiología , Ratas , Recuperación de la Función/efectos de los fármacos , Recuperación de la Función/fisiología , Volumen Sistólico/efectos de los fármacos , Volumen Sistólico/fisiología , Vasodilatadores/farmacología , Presión Ventricular/efectos de los fármacos , Presión Ventricular/fisiología
7.
FASEB J ; 16(2): 243-5, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11772943

RESUMEN

Aldose reductase, a member of the aldo-keto reductase family, has been implicated in the development of vascular and neurological complications in diabetes. Despite recent studies from our laboratory demonstrating protection of ischemic hearts by an aldose reductase inhibitor, the presence and influence of aldose reductase in cardiac tissue remain unknown. Our goal in this study was to isolate and characterize the kinetic properties of cardiac aldose reductase, as well as to study the impact of flux via this enzyme on glucose metabolism and contractile function in hearts subjected to ischemia-reperfusion. Results demonstrate that ischemia increases myocardial aldose reductase activity and that these increases are, in part, due to activation by nitric oxide. The kinetic parameter of cardiac aldose reductase (Kcat) was significantly higher in ischemic tissues. Aldose reductase inhibition increased glycolysis and glucose oxidation. Aldose reductase inhibited hearts, when subjected to ischemia/reperfusion, exhibited less ischemic injury and was associated with lower lactate/pyruvate ratios (a measure of cytosolic NADH/NAD+), greater tissue content of adenosine triphosphate, and improved cardiac function. These findings indicate that aldose reductase is a component of ischemic injury and that pharmacological inhibitors of aldose reductase present a novel adjunctive approach for protecting ischemic hearts.


Asunto(s)
Aldehído Reductasa/metabolismo , Isquemia Miocárdica/fisiopatología , Miocardio/enzimología , Penicilamina/análogos & derivados , Aldehído Reductasa/antagonistas & inhibidores , Aldehído Reductasa/efectos de los fármacos , Animales , Benzotiazoles , Inhibidores Enzimáticos/farmacología , Glucosa/metabolismo , Isquemia Miocárdica/prevención & control , Miocardio/metabolismo , Miocardio/patología , Óxido Nítrico/metabolismo , Donantes de Óxido Nítrico/farmacología , Penicilamina/farmacología , Ftalazinas/farmacología , Ratas , Tiazoles/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...