Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 320: 120760, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36464116

RESUMEN

Chlorpyrifos (CP) is a commonly used organophosphorous pesticide that is frequently utilised in the agricultural industry because of its great efficiency and inexpensive cost. The focus of the present study was to assess the impact of CP toxicity on Brassica juncea L. and to unravel the ameliorative potential of phytohormone, 24-epibrassinolide (EBL) mediated plant-microbe (Pseudomonas aeruginosa (B1), Burkholderia gladioli (B2)) interaction in B. juncea L. The maximum significant increment in the total chlorophyll, carotenoids, xanthophyll, anthocyanin and flavonoid content with EBL and B2 treatment in CP stressed B. juncea seedlings on spectrophotometric analysis were observed. Autofluorescence imaging of photosynthetic pigments i.e. chlorophyll, carotenoids, and total phenols with confocal microscopy showed maximum fluorescence with EBL and B2. Furthermore, when compared to CP stressed seedlings, scanning electron microscopy (SEM) study of the abaxial surface of leaves revealed a recovery in stomatal opening. The supplementation of EBL and PGPR (plant growth promoting rhizobacteria) improved the level of psb A (D1 subunit PSII) and psb B (CP 47 subunit of PSII) genes expression. The expression analysis of chalcone synthase (CHS), Phenylalanine ammonialyase (PAL), Phyotene synthase (PSY) with RT-PCR system showed up-regulation in the expression when supplemented with EBL and PGPR. As a result, the current study suggests that EBL and PGPR together, can reduce CP-induced toxicity in B. juncea seedlings and recovering the seedling biomass.


Asunto(s)
Cloropirifos , Cloropirifos/toxicidad , Cloropirifos/metabolismo , Planta de la Mostaza/metabolismo , Brasinoesteroides/farmacología , Brasinoesteroides/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Plantones
2.
Front Microbiol ; 13: 802512, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464947

RESUMEN

Chromium (Cr) toxicity leads to the enhanced production of reactive oxygen species (ROS), which are extremely toxic to the plant and must be minimized to protect the plant from oxidative stress. The potential of plant-growth-promoting rhizobacteria (PGPR) and earthworms in plant growth and development has been extensively studied. The present study was aimed at investigating the effect of two PGPR (Pseudomonas aeruginosa and Burkholderia gladioli) along with earthworms (Eisenia fetida) on the antioxidant defense system in Brassica juncea seedlings under Cr stress. The Cr toxicity reduced the fresh and dry weights of seedlings, enhanced the levels of superoxide anion (O2•-), hydrogen peroxide (H2O2), malondialdehyde (MDA), and electrolyte leakage (EL), which lead to membrane as well as the nuclear damage and reduced cellular viability in B. juncea seedlings. The activities of the antioxidant enzymes, viz., superoxide dismutase (SOD), guaiacol peroxidase (POD), ascorbate peroxidase (APOX), glutathione peroxidase (GPOX), dehydroascorbate reductase (DHAR), and glutathione reductase (GR) were increased; however, a reduction was observed in the activity of catalase (CAT) in the seedlings under Cr stress. Inoculation of the PGPR and the addition of earthworms enhanced the activities of all other antioxidant enzymes except GPOX, in which a reduction of the activity was observed. For total lipid- and water-soluble antioxidants and the non-enzymatic antioxidants, viz., ascorbic acid and glutathione, an enhance accumulation was observed upon the inoculation with PGPR and earthworms. The supplementation of PGPR with earthworms (combined treatment) reduced both the reactive oxygen species (ROS) and the MDA content by modulating the defense system of the plant. The histochemical studies also corroborated that the combined application of PGPR and earthworms reduced O2•-, H2O2, lipid peroxidation, and membrane and nuclear damage and improved cell viability. The expression of key antioxidant enzyme genes, viz., SOD, CAT, POD, APOX, GR, DHAR, and GST showed the upregulation of these genes at post-transcriptional level upon the combined treatment of the PGPR and earthworms, thereby corresponding to the improved plant biomass. However, a reduced expression of RBOH1 gene was noticed in seedlings supplemented under the effect of PGPR and earthworms grown under Cr stress. The results provided sufficient evidence regarding the role of PGPR and earthworms in the amelioration of Cr-induced oxidative stress in B. juncea.

3.
Biomolecules ; 11(6)2021 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-34204730

RESUMEN

Pervasive use of chlorpyrifos (CP), an organophosphorus pesticide, has been proven to be fatal for plant growth, especially at higher concentrations. CP poisoning leads to growth inhibition, chlorosis, browning of roots and lipid and protein degradation, along with membrane dysfunction and nuclear damage. Plants form a linking bridge between the underground and above-ground communities to escape from the unfavourable conditions. Association with beneficial rhizobacteria promotes the growth and development of the plants. Plant hormones are crucial regulators of basically every aspect of plant development. The growing significance of plant hormones in mediating plant-microbe interactions in stress recovery in plants has been extensively highlighted. Hence, the goal of the current study was to investigate the effect of 24-epibrassinolide (EBL) and PGPRs (Pseudomonas aeruginosa (Ma), Burkholderia gladioli (Mb)) on growth and the antioxidative defence system of CP-stressed Brassica juncea L. seedlings. CP toxicity reduced the germination potential, hypocotyl and radicle development and vigour index, which was maximally recuperated after priming with EBL and Mb. CP-exposed seedlings showed higher levels of superoxide anion (O2-), hydrogen peroxide (H2O2), lipid peroxidation and electrolyte leakage (EL) and a lower level of nitric oxide (NO). In-vivo visualisation of CP-stressed seedlings using a light and fluorescent microscope also revealed the increase in O2-, H2O2 and lipid peroxidation, and decreased NO levels. The combination of EBL and PGPRs reduced the reactive oxygen species (ROS) and malondialdehyde (MDA) contents and improved the NO level. In CP-stressed seedlings, increased gene expression of defence enzymes such as superoxide dismutase (SOD), ascorbate peroxidase (APOX), glutathione peroxidase (GPOX), dehydroascorbate reductase (DHAR) and glutathione reductase (GPOX) was seen, with the exception of catalase (CAT) on supplementation with EBL and PGPRs. The activity of nitrate reductase (NR) was likewise shown to increase after treatment with EBL and PGPRs. The results obtained from the present study substantiate sufficient evidence regarding the positive association of EBL and PGPRs in amelioration of CP-induced oxidative stress in Brassica juncea seedlings by strengthening the antioxidative defence machinery.


Asunto(s)
Brasinoesteroides/metabolismo , Burkholderia gladioli/crecimiento & desarrollo , Cloropirifos/farmacocinética , Planta de la Mostaza , Pseudomonas aeruginosa/crecimiento & desarrollo , Plantones , Esteroides Heterocíclicos/metabolismo , Planta de la Mostaza/crecimiento & desarrollo , Planta de la Mostaza/microbiología , Plantones/crecimiento & desarrollo , Plantones/microbiología
4.
Front Plant Sci ; 12: 608061, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33841453

RESUMEN

Brassinosteroids (BRs) are group of plant steroidal hormones that modulate developmental processes and also have pivotal role in stress management. Biosynthesis of BRs takes place through established early C-6 and late C-6 oxidation pathways and the C-22 hydroxylation pathway triggered by activation of the DWF4 gene that acts on multiple intermediates. BRs are recognized at the cell surface by the receptor kinases, BRI1 and BAK1, which relay signals to the nucleus through a phosphorylation cascade involving phosphorylation of BSU1 protein and proteasomal degradation of BIN2 proteins. Inactivation of BIN2 allows BES1/BZR1 to enter the nucleus and regulate the expression of target genes. In the whole cascade of signal recognition, transduction and regulation of target genes, BRs crosstalk with other phytohormones that play significant roles. In the current era, plants are continuously exposed to abiotic stresses and heavy metal stress is one of the major stresses. The present study reveals the mechanism of these events from biosynthesis, transport and crosstalk through receptor kinases and transcriptional networks under heavy metal stress.

5.
Plants (Basel) ; 9(2)2020 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-32013242

RESUMEN

In the current investigation, we studied role of Rhododendron leaf extract in Vigna radiata grown under chromium metal stress. We observed that seed treatment with Rhododendron leaf extract resulted in the recuperation of seedling growth under chromium toxicity. Seed treatment with Rhododendron leaf extract significantly improved the contents of anthocyanin and xanthophyll pigments under stress. The antioxidative defense system triggered after Rhododendron extract treatment, resulting in the increased actions of antioxidant enzymes. Oxidative stress induced by the assembly of reactive oxygen species was reduced after Rhododendron extract treatment under chromium toxicity as indicated by the enhanced contents of non-enzymatic antioxidants, namely ascorbic acid, tocopherol, and glutathione. Furthermore, Rhododendron leaf extract treatment under chromium metal stress also encouraged the biosynthesis of organic acids, polyphenols, as well as amino acids in Vigna radiata. Statistical analysis of the data with multiple linear regression also supported that Rhododendron leaf extract can effectively ease chromium metal-induced phytotoxicity in Vigna radiata.

6.
Chemosphere ; 236: 124364, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31326755

RESUMEN

Water is polluted by increasing activities of population and the necessity to provide them with goods and services that use water as a vital resource. The contamination of water due to heavy metals (HMs) is a big concern for humankind; however, global studies related to this topic are scarce. Thus, the current review assesses the content of HMs in surface water bodies throughout the world from 1994 to 2019. To achieve this goal, multivariate analyses were applied in order to determine the possible sources of HMs. Among the analyzed HMs in a total of 147 publications, the average content of Cr, Mn, Co, Ni, As and Cd exceeded the permissible limits suggested by WHO and USEPA. The results of the heavy metal pollution index, evaluation index, the degree of contamination, water pollution and toxicity load showed that the examined water bodies are highly polluted by HMs. The results of median lethal toxicity index showed maximum toxicity in As, Co, Cr and Ni in the surface water bodies. Results of ingestion and dermal pathways for adults and children in the current analyzed review showed that As is the major contaminant. Moreover, Cr, Ni, As and Cd showed values that could be considered as a high risk for cancer generation via the ingestion pathway as compared to the dermal route. It is recommended that remediation techniques such as the introduction of aquatic phytoremediation plant species and adsorbents should be included in land management plans in order to reduce human risks.


Asunto(s)
Monitoreo del Ambiente/métodos , Metales Pesados/química , Contaminantes Químicos del Agua/química , Agua/química , Humanos , Análisis Multivariante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...