Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Med Virol ; 96(4): e29601, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38597375

RESUMEN

Coronavirus disease 2019 (COVID-19) associated mucormycosis (CAM) was reported predominantly from India during the second wave of COVID-19  and has a high mortality rate. The present study aims to understand the fungal community composition of the nasopharyngeal region of CAM-infected individuals and compare it with severe COVID-19 patients and healthy controls. The fungal community composition was decoded by analyzing the sequence homology of the internal transcribed spacer-2-(ITS-2) region of metagenomic DNA extracted from the upper respiratory samples. The alpha-diversity indices were found to be significantly altered in CAM patients (p < 0.05). Interestingly, a higher abundance of Candida africana, Candida haemuloni, Starmerella floris, and Starmerella lactiscondensi was observed exclusively in CAM patients. The interindividual changes in mycobiome composition were well supported by beta-diversity analysis (p < 0.05). The current study provides insights into the dysbiosis of the nasal mycobiome during CAM infection. In conclusion, our study shows that severe COVID-19 and CAM are associated with alteration in mycobiome as compared to healthy controls. However, the sequential alteration in the fungal flora which ultimately leads to the development of CAM needs to be addressed by future studies.


Asunto(s)
COVID-19 , Mucormicosis , Micobioma , Humanos , Mucormicosis/epidemiología , Nariz , India/epidemiología
2.
Proc Natl Acad Sci U S A ; 120(33): e2305465120, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37549252

RESUMEN

Microbes evolve rapidly by modifying their genomes through mutations or through the horizontal acquisition of mobile genetic elements (MGEs) linked with fitness traits such as antimicrobial resistance (AMR), virulence, and metabolic functions. We conducted a multicentric study in India and collected different clinical samples for decoding the genome sequences of bacterial pathogens associated with sepsis, urinary tract infections, and respiratory infections to understand the functional potency associated with AMR and its dynamics. Genomic analysis identified several acquired AMR genes (ARGs) that have a pathogen-specific signature. We observed that blaCTX-M-15, blaCMY-42, blaNDM-5, and aadA(2) were prevalent in Escherichia coli, and blaTEM-1B, blaOXA-232, blaNDM-1, rmtB, and rmtC were dominant in Klebsiella pneumoniae. In contrast, Pseudomonas aeruginosa and Acinetobacter baumannii harbored blaVEB, blaVIM-2, aph(3'), strA/B, blaOXA-23, aph(3') variants, and amrA, respectively. Regardless of the type of ARG, the MGEs linked with ARGs were also pathogen-specific. The sequence type of these pathogens was identified as high-risk international clones, with only a few lineages being predominant and region-specific. Whole-cell proteome analysis of extensively drug-resistant K. pneumoniae, A. baumannii, E. coli, and P. aeruginosa strains revealed differential abundances of resistance-associated proteins in the presence and absence of different classes of antibiotics. The pathogen-specific resistance signatures and differential abundance of AMR-associated proteins identified in this study should add value to AMR diagnostics and the choice of appropriate drug combinations for successful antimicrobial therapy.


Asunto(s)
Antibacterianos , Escherichia coli , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Escherichia coli/genética , beta-Lactamasas/genética , beta-Lactamasas/farmacología , Proteómica , Farmacorresistencia Bacteriana , Farmacorresistencia Bacteriana Múltiple/genética , Klebsiella pneumoniae , Pruebas de Sensibilidad Microbiana
3.
Microb Ecol ; 86(3): 1814-1828, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37133495

RESUMEN

Ventilator-associated pneumonia (VAP) is a nosocomial infection contracted by ventilator patients in which bacteria colonize the upper digestive tract and contaminated secretions are released into the lower airway. This nosocomial infection increases the morbidity and mortality of the patients as well as the cost of treatment. Probiotic formulations have recently been proposed to prevent the colonization of these pathogenic bacteria. In this prospective observational study, we aimed to investigate the effects of probiotics on gut microbiota and their relation to clinical outcomes in mechanically ventilated patients. For this study, 35 patients were recruited (22 probiotic-treated and 13 without probiotic treatment) from a cohort of 169 patients. Patients in the probiotic group were given a dose of 6 capsules of a commercially available probiotic (VSL#3®:112.5 billion CFU/cap) in three divided doses for 10 days. Sampling was carried out after each dose to monitor the temporal change in the gut microbiota composition. To profile the microbiota, we used a 16S rRNA metagenomic approach, and differences among the groups were computed using multivariate statistical analyses. Differences in gut microbial diversity (Bray Curtis and Jaccard distance, p-value > 0.05) between the probiotic-treated group and the control group were not observed. Furthermore, treatment with probiotics resulted in the enrichment of Lactobacillus and Streptococcus in the gut microbiota of the probiotic-treated groups. Our results demonstrated that probiotics might lead to favorable alterations in gut microbiome characteristics. Future studies should focus on the appropriate dosages and frequency of probiotics, which can lead to improved clinical outcomes.


Asunto(s)
Microbioma Gastrointestinal , Probióticos , Humanos , ARN Ribosómico 16S/genética , Probióticos/uso terapéutico , Cuidados Críticos , Progresión de la Enfermedad
4.
Prog Mol Biol Transl Sci ; 191(1): 53-82, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36270682

RESUMEN

Taxonomic composition and functional potency of microbes associated with different parts of the human body have largely been explored by culture-independent metagenome sequencing. The diverse microbiota living throughout the human body is made up of thousands of microbial taxa from all three domains of life: Archaea, Bacteria, and Eukarya. Microbial load and functional potency in different body sites are well distinct and have minimal resemblance at higher taxonomic levels between the two habitats. The highest microbial load, diversity, and functional potency including biosynthesis of essential nutrients, chemical modifications of dietary components, and sources of immunomodulatory molecules, are found in the gut microbiome. However, the inter-individual diversity and dynamics of the human microbiome in a given body habitat vary greatly over time. Both environmental factors and host genetics contribute significantly to shaping microbial community structure and its stability. A basic understanding of native microbial compositions and their functional potency and stability in different parts of healthy humans living across geography will help us to identify disease-specific microbiota and develop potential microbiome-based therapeutics. Here, we updated our current understanding of the diversity, dynamics, and functional potency of microbiomes associated with different parts of the human body.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Bacterias/genética , Metagenoma , Archaea
5.
Gene ; 847: 146857, 2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36100116

RESUMEN

Helicobacter pylori is a ubiquitous bacterium and contributes significantly to the burden of chronic gastritis, peptic ulcers, and gastric cancer across the world. Adaptive phenotypes and virulence factors in H. pylori are heterogeneous and dynamic. However, limited information is available about the molecular nature of antimicrobial resistance phenotypes and virulence factors of H. pylori strains circulating in India. In the present study, we analyzed the whole genome sequences of 143 H. pylori strains, of which 32 are isolated from two different regions (eastern and southern) of India. Genomic repertoires of individual strains show distinct region-specific signatures. We observed lower resistance phenotypes and genotypes in the East Indian (Kolkata) H. pylori isolates against amoxicillin and furazolidone antibiotics, whereas higher resistance phenotypes to metronidazole and clarithromycin. Also, at molecular level, a greater number of AMR genes were observed in the east Indian H. pylori isolates as compared to the southern Indian isolates. From our findings, we suggest that metronidazole and clarithromycin antibiotics should be used judicially in the eastern India. However, no horizontally acquired antimicrobial resistance gene was observed in the current H. pylori strains. The comparative genome analysis shows that the number of genes involved in virulence, disease and resistance of H. pylori isolated from two different regions of India is significantly different. Single-nucleotide polymorphisms (SNPs) based phylogenetic analysis distinguished H. pylori strains into different clades according to their geographical locations. Conditionally beneficial functions including antibiotic resistance phenotypes that are linked with faster evolution rates in the Indian isolates.


Asunto(s)
Antiinfecciosos , Infecciones por Helicobacter , Helicobacter pylori , Humanos , Amoxicilina , Antibacterianos/farmacología , Claritromicina/farmacología , Farmacorresistencia Bacteriana/genética , Furazolidona , Genómica , Infecciones por Helicobacter/tratamiento farmacológico , Infecciones por Helicobacter/microbiología , Helicobacter pylori/genética , Metronidazol , Pruebas de Sensibilidad Microbiana , Filogenia , Factores de Virulencia , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...