Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Front Toxicol ; 6: 1285768, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38523647

RESUMEN

Introduction: The Adverse Outcome Pathway (AOP) concept facilitates rapid hazard assessment for human health risks. AOPs are constantly evolving, their number is growing, and they are referenced in the AOP-Wiki database, which is supported by the OECD. Here, we present a study that aims at identifying well-defined biological areas, as well as gaps within the AOP-Wiki for future research needs. It does not intend to provide a systematic and comprehensive summary of the available literature on AOPs but summarizes and maps biological knowledge and diseases represented by the already developed AOPs (with OECD endorsed status or under validation). Methods: Knowledge from the AOP-Wiki database were extracted and prepared for analysis using a multi-step procedure. An automatic mapping of the existing information on AOPs (i.e., genes/proteins and diseases) was performed using bioinformatics tools (i.e., overrepresentation analysis using Gene Ontology and DisGeNET), allowing both the classification of AOPs and the development of AOP networks (AOPN). Results: AOPs related to diseases of the genitourinary system, neoplasms and developmental anomalies are the most frequently investigated on the AOP-Wiki. An evaluation of the three priority cases (i.e., immunotoxicity and non-genotoxic carcinogenesis, endocrine and metabolic disruption, and developmental and adult neurotoxicity) of the EU-funded PARC project (Partnership for the Risk Assessment of Chemicals) are presented. These were used to highlight under- and over-represented adverse outcomes and to identify and prioritize gaps for further research. Discussion: These results contribute to a more comprehensive understanding of the adverse effects associated with the molecular events in AOPs, and aid in refining risk assessment for stressors and mitigation strategies. Moreover, the FAIRness (i.e., data which meets principles of findability, accessibility, interoperability, and reusability (FAIR)) of the AOPs appears to be an important consideration for further development.

2.
Reprod Toxicol ; 117: 108358, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36863571

RESUMEN

Human induced pluripotent stem cell (hiPSC)-derived neural stem cells (NSCs) and their differentiated neuronal/glial derivatives have been recently considered suitable to assess in vitro developmental neurotoxicity (DNT) triggered by exposure to environmental chemicals. The use of human-relevant test systems combined with in vitro assays specific for different neurodevelopmental events, enables a mechanistic understanding of the possible impact of environmental chemicals on the developing brain, avoiding extrapolation uncertainties associated with in vivo studies. Currently proposed in vitro battery for regulatory DNT testing accounts for several assays suitable to study key neurodevelopmental processes, including NSC proliferation and apoptosis, differentiation into neurons and glia, neuronal migration, synaptogenesis, and neuronal network formation. However, assays suitable to measure interference of compounds with neurotransmitter release or clearance are at present not included, which represents a clear gap of the biological applicability domain of such a testing battery. Here we applied a HPLC-based methodology to measure the release of neurotransmitters in a previously characterized hiPSC-derived NSC model undergoing differentiation towards neurons and glia. Glutamate release was assessed in control cultures and upon depolarization, as well as in cultures repeatedly exposed to some known neurotoxicants (BDE47 and lead) and chemical mixtures. Obtained data indicate that these cells have the ability to release glutamate in a vesicular manner, and that both glutamate clearance and vesicular release concur in the maintenance of extracellular glutamate levels. In conclusion, analysis of neurotransmitter release is a sensitive readout that should be included in the envisioned battery of in vitro assays for DNT testing.


Asunto(s)
Células Madre Pluripotentes Inducidas , Síndromes de Neurotoxicidad , Humanos , Pruebas de Toxicidad/métodos , Neuronas , Neuroglía , Síndromes de Neurotoxicidad/etiología , Diferenciación Celular , Glutamatos
3.
Front Pharmacol ; 14: 1136174, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36959852

RESUMEN

Introduction: Epidemiological studies in children suggested that in utero exposure to chlorpyrifos (CPF), an organophosphate insecticide, may cause developmental neurotoxicity (DNT). We applied quantitative in vitro-in vivo extrapolation (QIVIVE) based on in vitro concentration and non-choline esterase-dependent effects data combined with Benchmark dose (BMD) modelling to predict oral maternal CPF exposure during pregnancy leading to fetal brain effect concentration. By comparing the results with data from epidemiological studies, we evaluated the contribution of the in vitro endpoints to the mode of action (MoA) for CPF-induced DNT. Methods: A maternal-fetal PBK model built in PK-Sim® was used to perform QIVIVE predicting CPF concentrations in a pregnant women population at 15 weeks of gestation from cell lysate concentrations obtained in human induced pluripotent stem cell-derived neural stem cells undergoing differentiation towards neurons and glia exposed to CPF for 14 days. The in vitro concentration and effect data were used to perform BMD modelling. Results: The upper BMD was converted into maternal doses which ranged from 3.21 to 271 mg/kg bw/day. Maternal CPF blood levels from epidemiological studies reporting DNT findings in their children were used to estimate oral CPF exposure during pregnancy using the PBK model. It ranged from 0.11 to 140 µg/kg bw/day. Discussion: The effective daily intake doses predicted from the in vitro model were several orders of magnitude higher than exposures estimated from epidemiological studies to induce developmental non-cholinergic neurotoxic responses, which were captured by the analyzed in vitro test battery. These were also higher than the in vivo LOEC for cholinergic effects. Therefore, the quantitative predictive value of the investigated non-choline esterase-dependent effects, although possibly relevant for other chemicals, may not adequately represent potential key events in the MoA for CPF-associated DNT.

4.
Cells ; 11(21)2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36359807

RESUMEN

Several reports have shown that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has the potential to also be neurotropic. However, the mechanisms by which SARS-CoV-2 induces neurologic injury, including neurological and/or psychological symptoms, remain unclear. In this review, the available knowledge on the neurobiological mechanisms underlying COVID-19 was organized using the AOP framework. Four AOPs leading to neurological adverse outcomes (AO), anosmia, encephalitis, stroke, and seizure, were developed. Biological key events (KEs) identified to induce these AOs included binding to ACE2, blood-brain barrier (BBB) disruption, hypoxia, neuroinflammation, and oxidative stress. The modularity of AOPs allows the construction of AOP networks to visualize core pathways and recognize neuroinflammation and BBB disruption as shared mechanisms. Furthermore, the impact on the neurological AOPs of COVID-19 by modulating and multiscale factors such as age, psychological stress, nutrition, poverty, and food insecurity was discussed. Organizing the existing knowledge along an AOP framework can represent a valuable tool to understand disease mechanisms and identify data gaps and potentially contribute to treatment, and prevention. This AOP-aligned approach also facilitates synergy between experts from different backgrounds, while the fast-evolving and disruptive nature of COVID-19 emphasizes the need for interdisciplinarity and cross-community research.


Asunto(s)
Rutas de Resultados Adversos , COVID-19 , Accidente Cerebrovascular , Humanos , SARS-CoV-2 , Barrera Hematoencefálica
5.
Reprod Toxicol ; 112: 36-50, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35697279

RESUMEN

The advent of the technology to isolate or generate human pluripotent stem cells provided the potential to develop a wide range of human models that could enhance understanding of mechanisms underlying human development and disease. These systems are now beginning to mature and provide the basis for the development of in vitro assays suitable to understand the biological processes involved in the multi-organ systems of the human body, and will improve strategies for diagnosis, prevention, therapies and precision medicine. Induced pluripotent stem cell lines are prone to phenotypic and genotypic changes and donor/clone dependent variability, which means that it is important to identify the most appropriate characterization markers and quality control measures when sourcing new cell lines and assessing differentiated cell and tissue culture preparations for experimental work. This paper considers those core quality control measures for human pluripotent stem cell lines and evaluates the state of play in the development of key functional markers for their differentiated cell derivatives to promote assurance of reproducibility of scientific data derived from pluripotent stem cell-based systems.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Técnicas de Cultivo de Célula , Diferenciación Celular , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes/metabolismo , Reproducibilidad de los Resultados
6.
Reprod Toxicol ; 110: 124-140, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35378221

RESUMEN

Human induced pluripotent stem cell (iPSC)-derived neuronal and glial cell models are suitable to assess the effects of environmental chemicals on the developing brain. Such test systems can recapitulate several key neurodevelopmental features, such as neural stem cell formation and differentiation towards different neuronal subtypes and astrocytes, neurite outgrowth, synapse formation and neuronal network formation and function, which are crucial for brain development. While monolayer, two-dimensional (2D) cultures of human iPSC-neuronal or glial derivatives are generally suited for high-throughput testing, they also show some limitations. In particular, differentiation towards myelinating oligodendrocytes can only be achieved after extended periods in differentiation. In recent years, the implementation of three-dimensional (3D) neuronal and glial models obtained from human iPSCs has been shown to compensate for such limitations, enabling robust differentiation towards both neuronal and glial cell populations, myelination and formation of more mature neuronal network activity. Here we compared the differentiation capacity of human iPSC-derived neural stem cells cultured either as 2D monolayer or as 3D neurospheres, and assessed chlorpyrifos (CPF) effects. Data indicate that 3D neurospheres differentiate towards neurons and oligodendroglia more rapidly than 2D cultures; however, the 2D model is more suitable to assess neuronal functionality by analysis of spontaneous electrical activity using multielectrode array. Moreover, 2D and 3D test systems are diversely susceptible to CPF treatment. In conclusion, the selection of the most suitable in vitro test system (either 2D or 3D) should take into account the context of use and intended research goals ('fit for purpose' principle).


Asunto(s)
Cloropirifos , Células Madre Pluripotentes Inducidas , Síndromes de Neurotoxicidad , Humanos , Diferenciación Celular , Cloropirifos/toxicidad , Neuronas , Oligodendroglía
7.
Comput Toxicol ; 21: 100206, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35211661

RESUMEN

In a century where toxicology and chemical risk assessment are embracing alternative methods to animal testing, there is an opportunity to understand the causal factors of neurodevelopmental disorders such as learning and memory disabilities in children, as a foundation to predict adverse effects. New testing paradigms, along with the advances in probabilistic modelling, can help with the formulation of mechanistically-driven hypotheses on how exposure to environmental chemicals could potentially lead to developmental neurotoxicity (DNT). This investigation aimed to develop a Bayesian hierarchical model of a simplified AOP network for DNT. The model predicted the probability that a compound induces each of three selected common key events (CKEs) of the simplified AOP network and the adverse outcome (AO) of DNT, taking into account correlations and causal relations informed by the key event relationships (KERs). A dataset of 88 compounds representing pharmaceuticals, industrial chemicals and pesticides was compiled including physicochemical properties as well as in silico and in vitro information. The Bayesian model was able to predict DNT potential with an accuracy of 76%, classifying the compounds into low, medium or high probability classes. The modelling workflow achieved three further goals: it dealt with missing values; accommodated unbalanced and correlated data; and followed the structure of a directed acyclic graph (DAG) to simulate the simplified AOP network. Overall, the model demonstrated the utility of Bayesian hierarchical modelling for the development of quantitative AOP (qAOP) models and for informing the use of new approach methodologies (NAMs) in chemical risk assessment.

8.
ALTEX ; 39(2): 322­335, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35032963

RESUMEN

On April 28-29, 2021, 50 scientists from different fields of expertise met for the 3rd online CIAO workshop. The CIAO project "Modelling the Pathogenesis of COVID-19 using the Adverse Outcome Pathway (AOP) framework" aims at building a holistic assembly of the available scientific knowledge on COVID-19 using the AOP framework. An individual AOP depicts the disease progression from the initial contact with the SARS-CoV-2 virus through biological key events (KE) toward an adverse outcome such as respiratory distress, anosmia or multiorgan failure. Assembling the individual AOPs into a network highlights shared KEs as central biological nodes involved in multiple outcomes observed in COVID-19 patients. During the workshop, the KEs and AOPs established so far by the CIAO members were presented and posi­tioned on a timeline of the disease course. Modulating factors influencing the progression and severity of the disease were also addressed as well as factors beyond purely biological phenomena. CIAO relies on an interdisciplinary crowd­sourcing effort, therefore, approaches to expand the CIAO network by widening the crowd and reaching stakeholders were also discussed. To conclude the workshop, it was decided that the AOPs/KEs will be further consolidated, inte­grating virus variants and long COVID when relevant, while an outreach campaign will be launched to broaden the CIAO scientific crowd.


Asunto(s)
Rutas de Resultados Adversos , COVID-19 , COVID-19/complicaciones , Humanos , SARS-CoV-2 , Síndrome Post Agudo de COVID-19
9.
ALTEX ; 39: 30-70, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34882777

RESUMEN

Good Cell and Tissue Culture Practice (GCCP) 2.0 is an updated guidance document from GCCP 1.0 (published by ECVAM in 2005), which was developed for practical use in the laboratory to assure the reproducibility of in vitro (cell-based) work. The update in the guidance was essential as cell models have advanced dramatically to more complex culture systems and need more comprehensive quality management to ensure reproducibility and high-quality scientific data. This document describes six main principles to consider when performing cell culture including characterization and maintenance of essential characteristics, quality management, documentation and reporting, safety, education and training, and ethics. The document does not intend to impose detailed procedures but to describe potential quality issues. It is foreseen that the document will require further updates as the science and technologies evolve over time.


Asunto(s)
Alternativas a las Pruebas en Animales , Técnicas de Cultivo de Célula , Animales , Laboratorios , Reproducibilidad de los Resultados
10.
Reprod Toxicol ; 105: 101-119, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34455033

RESUMEN

Prenatal and postnatal co-exposure to multiple chemicals at the same time may have deleterious effects on the developing nervous system. We previously showed that chemicals acting through similar mode of action (MoA) and grouped based on perturbation of brain derived neurotrophic factor (BDNF), induced greater neurotoxic effects on human induced pluripotent stem cell (hiPSC)-derived neurons and astrocytes compared to chemicals with dissimilar MoA. Here we assessed the effects of repeated dose (14 days) treatments with mixtures containing the six chemicals tested in our previous study (Bisphenol A, Chlorpyrifos, Lead(II) chloride, Methylmercury chloride, PCB138 and Valproic acid) along with 2,2'4,4'-tetrabromodiphenyl ether (BDE47), Ethanol, Vinclozolin and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)), on hiPSC-derived neural stem cells undergoing differentiation toward mixed neurons/astrocytes up to 21 days. Similar MoA chemicals in mixtures caused an increase of BDNF levels and neurite outgrowth, and a decrease of synapse formation, which led to inhibition of electrical activity. Perturbations of these endpoints are described as common key events in adverse outcome pathways (AOPs) specific for DNT. When compared with mixtures tested in our previous study, adding similarly acting chemicals (BDE47 and EtOH) to the mixture resulted in a stronger downregulation of synapses. A synergistic effect on some synaptogenesis-related features (PSD95 in particular) was hypothesized upon treatment with tested mixtures, as indicated by mathematical modelling. Our findings confirm that the use of human iPSC-derived mixed neuronal/glial models applied to a battery of in vitro assays anchored to key events in DNT AOP networks, combined with mathematical modelling, is a suitable testing strategy to assess in vitro DNT induced by chemical mixtures.


Asunto(s)
Bioensayo , Modelos Teóricos , Síndromes de Neurotoxicidad , Astrocitos/efectos de los fármacos , Compuestos de Bencidrilo/toxicidad , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Diferenciación Celular , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Cloropirifos/toxicidad , Etanol/toxicidad , Éteres Difenilos Halogenados/toxicidad , Humanos , Células Madre Pluripotentes Inducidas/citología , Plomo/toxicidad , Compuestos de Metilmercurio/toxicidad , Células-Madre Neurales/citología , Neuronas/efectos de los fármacos , Oxazoles/toxicidad , Fenoles/toxicidad , Bifenilos Policlorados/toxicidad , Dibenzodioxinas Policloradas/toxicidad , Ácido Valproico/toxicidad
11.
Reprod Toxicol ; 103: 159-170, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34147625

RESUMEN

A major challenge in regulatory developmental neurotoxicity (DNT) assessment is lack of toxicological information for many compounds. Therefore, the Test Guidelines programme of the Organisation for Economic Cooperation and Development (OECD) took the initiative to coordinate an international collaboration between diverse stakeholders to consider integration of alternative approaches towards improving the current chemical DNT testing. During the past few years, a series of workshops was organized during which a consensus was reached that incorporation of a DNT testing battery that relies on in vitro assays anchored to key neurodevelopmental processes should be developed. These key developmental processes include neural progenitor cell proliferation, neuronal and oligodendrocyte differentiation, neural cell migration, neurite outgrowth, synaptogenesis and neuronal network formation, as well key events identified in the existing Adverse Outcome Pathways (AOPs). AOPs deliver mechanistic information on the causal links between molecular initiating event, intermediate key events and an adverse outcome of regulatory concern, providing the biological context to facilitate development of Integrated Approaches to Testing and Assessment (IATA) for various regulatory purposes. Developing IATA case studies, using mechanistic information derived from AOPs, is expected to increase scientific confidence for the use of in vitro methods within an IATA, thereby facilitating regulatory uptake. This manuscript summarizes the current state of international efforts to enhance DNT testing by using an in vitro battery of assays focusing on the role of AOPs in informing the development of IATA for different regulatory purposes, aiming to deliver an OECD guidance document on use of in vitro DNT battery of assays that include in vitro data interpretation.


Asunto(s)
Dinitrobencenos/toxicidad , Sistema Nervioso/efectos de los fármacos , Rutas de Resultados Adversos , Alternativas a las Pruebas en Animales , Animales , Bioensayo , Transporte Biológico , Encéfalo , Humanos , Sistema Nervioso/crecimiento & desarrollo , Células-Madre Neurales , Neurogénesis , Neuronas , Síndromes de Neurotoxicidad , Organización para la Cooperación y el Desarrollo Económico , Medición de Riesgo , Pruebas de Toxicidad
12.
Arch Toxicol ; 95(6): 1867-1897, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33851225

RESUMEN

The EU Directive 2010/63/EU   on the protection of animals used for scientific purposes and other EU regulations, such as REACH and the Cosmetic Products Regulation advocate for a change in the way toxicity testing is conducted. Whilst the Cosmetic Products Regulation bans animal testing altogether, REACH aims for a progressive shift from in vivo testing towards quantitative in vitro and computational approaches. Several endpoints can already be addressed using non-animal approaches including skin corrosion and irritation, serious eye damage and irritation, skin sensitisation, and mutagenicity and genotoxicity. However, for systemic effects such as acute toxicity, repeated dose toxicity and reproductive and developmental toxicity, evaluation of chemicals under REACH still heavily relies on animal tests. Here we summarise current EU regulatory requirements for the human health assessment of chemicals under REACH and the Cosmetic Products Regulation, considering the more critical endpoints and identifying the main challenges in introducing alternative methods into regulatory testing practice. This supports a recent initiative taken by the International Cooperation on Alternative Test Methods (ICATM) to summarise current regulatory requirements specific for the assessment of chemicals and cosmetic products for several human health-related endpoints, with the aim of comparing different jurisdictions and coordinating the promotion and ultimately the implementation of non-animal approaches worldwide. Recent initiatives undertaken at European level to promote the 3Rs and the use of alternative methods in current regulatory practice are also discussed.


Asunto(s)
Alternativas a las Pruebas en Animales/legislación & jurisprudencia , Cosméticos/legislación & jurisprudencia , Pruebas de Toxicidad/métodos , Alternativas a las Pruebas en Animales/métodos , Animales , Cosméticos/toxicidad , Unión Europea , Humanos , Cooperación Internacional , Medición de Riesgo/legislación & jurisprudencia , Medición de Riesgo/métodos
13.
Reprod Toxicol ; 100: 155-162, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33278556

RESUMEN

25 years after the first Berlin Workshop on Developmental Toxicity this 10th Berlin Workshop aimed to bring together international experts from authorities, academia and industry to consider scientific, methodologic and regulatory aspects in risk assessment of developmental toxicity and to debate alternative strategies in testing developmental effects in the future. Proposals for improvement of the categorization of developmental effects were discussed as well as the update of the DevTox database as valuable tool for harmonization. The development of adverse outcome pathways relevant to developmental neurotoxicity (DNT) was debated as a fundamental improvement to guide the screening and testing for DNT using alternatives to animal methods. A further focus was the implementation of an in vitro mechanism-based battery, which can support various regulatory applications associated with the assessment of chemicals and mixtures. More interdisciplinary and translation research should be initiated to accelerate the development of new technologies to test developmental toxicity. Technologies in the pipeline are (i) high throughput imaging techniques, (ii) models for DNT screening tests, (iii) use of computer tomography for assessment of thoracolumbar supernumerary ribs in animal models, and (iv) 3D biofabrication of bone development and regeneration tissue models. In addition, increased collaboration with the medical community was suggested to improve the relevance of test results to humans and identify more clinically relevant endpoints. Finally, the participants agreed that this conference facilitated better understanding innovative approaches that can be useful for the identification of developmental health risks due to exposure to chemical substances.


Asunto(s)
Desarrollo Óseo/efectos de los fármacos , Educación , Enfermedades del Sistema Nervioso/inducido químicamente , Toxicología/métodos , Aniversarios y Eventos Especiales , Berlin , Uso de Internet , Sistema Nervioso/efectos de los fármacos , Sistema Nervioso/crecimiento & desarrollo , Medición de Riesgo
14.
Reprod Toxicol ; 100: 17-34, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33333158

RESUMEN

Halogenated persistent organic pollutants (POPs) like perfluorinated alkylated substances (PFASs), brominated flame retardants (BFRs), organochlorine pesticides and polychlorinated biphenyls (PCBs) are known to cause cancer, immunotoxicity, neurotoxicity and interfere with reproduction and development. Concerns have been raised about the impact of POPs upon brain development and possibly neurodevelopmental disorders. The developing brain is a particularly vulnerable organ due to dynamic and complex neurodevelopmental processes occurring early in life. However, very few studies have reported on the effects of POP mixtures at human relevant exposures, and their impact on key neurodevelopmental processes using human in vitro test systems. Aiming to reduce this knowledge gap, we exposed mixed neuronal/glial cultures differentiated from neural stem cells (NSCs) derived from human induced pluripotent stem cells (hiPSCs) to reconstructed mixtures of 29 different POPs using concentrations comparable to Scandinavian human blood levels. Effects of the POP mixtures on neuronal proliferation, differentiation and synaptogenesis were evaluated using in vitro assays anchored to common key events identified in the existing developmental neurotoxicity (DNT) adverse outcome pathways (AOPs). The present study showed that mixtures of POPs (in particular brominated and chlorinated compounds) at human relevant concentrations increased proliferation of NSCs and decreased synapse number. Based on a mathematical modelling, synaptogenesis and neurite outgrowth seem to be the most sensitive DNT in vitro endpoints. Our results indicate that prenatal exposure to POPs may affect human brain development, potentially contributing to recently observed learning and memory deficits in children.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Halogenación , Células-Madre Neurales/fisiología , Contaminantes Orgánicos Persistentes/toxicidad , Sinapsis/fisiología , Encéfalo/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Factor Neurotrófico Derivado del Encéfalo/análisis , Femenino , Expresión Génica/efectos de los fármacos , Humanos , Modelos Teóricos , Células-Madre Neurales/química , Neuritas/efectos de los fármacos , Trastornos del Neurodesarrollo/inducido químicamente , Contaminantes Orgánicos Persistentes/sangre , Embarazo , Efectos Tardíos de la Exposición Prenatal , Receptores de Hidrocarburo de Aril/genética
15.
Reprod Toxicol ; 98: 174-188, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33011216

RESUMEN

For some complex toxicological endpoints, chemical safety assessment has conventionally relied on animal testing. Apart from the ethical issues, also scientific considerations have been raised concerning the traditional approach, highlighting the importance for considering real life exposure scenario. Implementation of flexible testing strategies, integrating multiple sources of information, including in vitro reliable test methods and in vitro biokinetics, would enhance the relevance of the obtained results. Such an approach could be pivotal in the evaluation of developmental neurotoxicity (DNT), especially when applied to human cell-based models, mimicking key neurodevelopmental processes, relevant to human brain development. Here, we integrated the kinetic behaviour with the toxicodynamic alterations of chlorpyrifos (CPF), such as in vitro endpoints specific for DNT evaluation, after repeated exposure during differentiation of human neural stem cells into a mixed culture of neurons and astrocytes. The upregulation of some cytochrome P450 and glutathione S-transferase genes during neuronal differentiation and the formation of the two major CPF metabolites (due to bioactivation and detoxification) supported the metabolic competence of the used in vitro model. The alterations in the number of synapses, neurite outgrowth, brain derived neurotrophic factor, the proportion of neurons and astrocytes, as well as spontaneous electrical activity correlated well with the CPF ability to enter the cells and be bioactivated to CPF-oxon. Overall, our results confirm that combining in vitro biokinetics and assays to evaluate effects on neurodevelopmental endpoints in human cells should be regarded as a key strategy for a quantitative characterization of DNT effects.


Asunto(s)
Cloropirifos/toxicidad , Insecticidas/toxicidad , Células-Madre Neurales/efectos de los fármacos , Síndromes de Neurotoxicidad , Bioensayo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Cloropirifos/farmacocinética , Técnicas de Cocultivo , Sistema Enzimático del Citocromo P-450/genética , Humanos , Células Madre Pluripotentes Inducidas/citología , Insecticidas/farmacocinética , Células-Madre Neurales/citología , Neuroglía/citología , Neuroglía/efectos de los fármacos , Neuronas/citología , Neuronas/efectos de los fármacos
16.
Reprod Toxicol ; 96: 327-336, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32781019

RESUMEN

Limitations of regulatory in vivo developmental neurotoxicity (DNT) testing and assessment are well known, such as the 3Rs conflict, low throughput, high costs, high specific expertise needed and the lack of deeper mechanistic information. Moreover, the standard in vivo DNT data variability and in the experimental animal to human real life extrapolation is uncertain. Here, knowledge about these limitations and uncertainties is systematically summarized using a tabular OECD format. We also outline a hypothesis how alternative, fit-for-purpose Integrated Approaches to Testing and Assessment (IATAs) for DNT could improve current standard animal testing: Relative gains in 3Rs compliance, reduced costs, higher throughput, improved basic study design, higher standardization of testing and assessment and validation without 3Rs conflict, increasing the availability and reliability of DNT data. This could allow a more reliable comparative toxicity assessment over a larger proportion of chemicals within our global environment. The use of early, mechanistic, sensitive indicators for potential DNT could better support human safety assessment and mixture extrapolation. Using kinetic modelling ideally these could provide - eventually context dependent - at least the same level of human health protection. Such new approaches could also lead to a new mechanistic understanding for chemical safety, permitting determination of a dose that is likely not to trigger defined toxicity traits or pathways, rather than a dose not causing the current apical organism endpoints. The manuscript shall motivate and guide the development of new alternative methods for IATAs with diverse applications and support decision-making for their regulatory acceptance.


Asunto(s)
Trastornos del Neurodesarrollo/inducido químicamente , Síndromes de Neurotoxicidad , Pruebas de Toxicidad/métodos , Animales , Humanos , Medición de Riesgo , Incertidumbre
18.
Environ Health ; 19(1): 23, 2020 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-32093744

RESUMEN

BACKGROUND: In light of the vulnerability of the developing brain, mixture risk assessment (MRA) for the evaluation of developmental neurotoxicity (DNT) should be implemented, since infants and children are co-exposed to more than one chemical at a time. One possible approach to tackle MRA could be to cluster DNT chemicals in a mixture on the basis of their mode of action (MoA) into 'similar' and 'dissimilar', but still contributing to the same adverse outcome, and anchor DNT assays to common key events (CKEs) identified in DNT-specific adverse outcome pathways (AOPs). Moreover, the use of human in vitro models, such as induced pluripotent stem cell (hiPSC)-derived neuronal and glial cultures would enable mechanistic understanding of chemically-induced adverse effects, avoiding species extrapolation. METHODS: HiPSC-derived neural progenitors differentiated into mixed cultures of neurons and astrocytes were used to assess the effects of acute (3 days) and repeated dose (14 days) treatments with single chemicals and in mixtures belonging to different classes (i.e., lead(II) chloride and methylmercury chloride (heavy metals), chlorpyrifos (pesticide), bisphenol A (organic compound and endocrine disrupter), valproic acid (drug), and PCB138 (persistent organic pollutant and endocrine disrupter), which are associated with cognitive deficits, including learning and memory impairment in children. Selected chemicals were grouped based on their mode of action (MoA) into 'similar' and 'dissimilar' MoA compounds and their effects on synaptogenesis, neurite outgrowth, and brain derived neurotrophic factor (BDNF) protein levels, identified as CKEs in currently available AOPs relevant to DNT, were evaluated by immunocytochemistry and high content imaging analysis. RESULTS: Chemicals working through similar MoA (i.e., alterations of BDNF levels), at non-cytotoxic (IC20/100), very low toxic (IC5), or moderately toxic (IC20) concentrations, induce DNT effects in mixtures, as shown by increased number of neurons, impairment of neurite outgrowth and synaptogenesis (the most sensitive endpoint as confirmed by mathematical modelling) and increase of BDNF levels, to a certain extent reproducing autism-like cellular changes observed in the brain of autistic children. CONCLUSIONS: Our findings suggest that the use of human iPSC-derived mixed neuronal/glial cultures applied to a battery of assays anchored to key events of an AOP network represents a valuable approach to identify mixtures of chemicals with potential to cause learning and memory impairment in children.


Asunto(s)
Rutas de Resultados Adversos , Contaminantes Ambientales/toxicidad , Síndromes de Neurotoxicidad/etiología , Neurotoxinas/toxicidad , Disruptores Endocrinos/toxicidad , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Metales Pesados/toxicidad , Células-Madre Neurales/efectos de los fármacos , Plaguicidas/toxicidad , Bifenilos Policlorados/toxicidad , Medición de Riesgo , Pruebas de Toxicidad
20.
Arch Toxicol ; 93(10): 2759-2772, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31444508

RESUMEN

An adverse outcome pathway (AOP) network is an attempt to represent the complexity of systems toxicology. This study illustrates how an AOP network can be derived and analysed in terms of its topological features to guide research and support chemical risk assessment. A four-step workflow describing general design principles and applied design principles was established and implemented. An AOP network linking nine linear AOPs was mapped and made available in AOPXplorer. The resultant AOP network was modelled and analysed in terms of its topological features, including level of degree, eccentricity and betweenness centrality. Several well-connected KEs were identified, and cell injury/death was established as the most hyperlinked KE across the network. The derived network expands the utility of linear AOPs to better understand signalling pathways involved in developmental and adult/ageing neurotoxicity. The results provide a solid basis to guide the development of in vitro test method batteries, as well as further quantitative modelling of key events (KEs) and key event relationships (KERs) in the AOP network, with an eventual aim to support hazard characterisation and chemical risk assessment.


Asunto(s)
Rutas de Resultados Adversos , Síndromes de Neurotoxicidad/etiología , Medición de Riesgo/métodos , Sustancias Peligrosas/toxicidad , Humanos , Síndromes de Neurotoxicidad/fisiopatología , Transducción de Señal/efectos de los fármacos , Toxicología/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...