Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Oncogene ; 41(34): 4066-4078, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35851845

RESUMEN

Glutamine is a conditionally essential nutrient for many cancer cells, but it remains unclear how consuming glutamine in excess of growth requirements confers greater fitness to glutamine-addicted cancers. By contrasting two breast cancer subtypes with distinct glutamine dependencies, we show that glutamine-indispensable triple-negative breast cancer (TNBC) cells rely on a non-canonical glutamine-to-glutamate overflow, with glutamine carbon routed once through the TCA cycle. Importantly, this single-pass glutaminolysis increases TCA cycle fluxes and replenishes TCA cycle intermediates in TNBC cells, a process that achieves net oxidation of glucose but not glutamine. The coupling of glucose and glutamine catabolism appears hard-wired via a distinct TNBC gene expression profile biased to strip and then sequester glutamine nitrogen, but hampers the ability of TNBC cells to oxidise glucose when glutamine is limiting. Our results provide a new understanding of how metabolically rigid TNBC cells are sensitive to glutamine deprivation and a way to select vulnerable TNBC subtypes that may be responsive to metabolic-targeted therapies.


Asunto(s)
Glutamina , Neoplasias de la Mama Triple Negativas , Línea Celular Tumoral , Ciclo del Ácido Cítrico , Glucosa/metabolismo , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Humanos , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo
2.
Mol Cancer Res ; 17(4): 949-962, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30647103

RESUMEN

Prostate cancer cells exhibit altered cellular metabolism but, notably, not the hallmarks of Warburg metabolism. Prostate cancer cells exhibit increased de novo synthesis of fatty acids (FA); however, little is known about how extracellular FAs, such as those in the circulation, may support prostate cancer progression. Here, we show that increasing FA availability increased intracellular triacylglycerol content in cultured patient-derived tumor explants, LNCaP and C4-2B spheroids, a range of prostate cancer cells (LNCaP, C4-2B, 22Rv1, PC-3), and prostate epithelial cells (PNT1). Extracellular FAs are the major source (∼83%) of carbons to the total lipid pool in all cell lines, compared with glucose (∼13%) and glutamine (∼4%), and FA oxidation rates are greater in prostate cancer cells compared with PNT1 cells, which preferentially partitioned extracellular FAs into triacylglycerols. Because of the higher rates of FA oxidation in C4-2B cells, cells remained viable when challenged by the addition of palmitate to culture media and inhibition of mitochondrial FA oxidation sensitized C4-2B cells to palmitate-induced apoptosis. Whereas in PC-3 cells, palmitate induced apoptosis, which was prevented by pretreatment of PC-3 cells with FAs, and this protective effect required DGAT-1-mediated triacylglycerol synthesis. These outcomes highlight for the first-time heterogeneity of lipid metabolism in prostate cancer cells and the potential influence that obesity-associated dyslipidemia or host circulating has on prostate cancer progression. IMPLICATIONS: Extracellular-derived FAs are primary building blocks for complex lipids and heterogeneity in FA metabolism exists in prostate cancer that can influence tumor cell behavior.


Asunto(s)
Ácidos Grasos/metabolismo , Lípidos/biosíntesis , Neoplasias de la Próstata/metabolismo , Línea Celular Tumoral , Líquido Extracelular/metabolismo , Humanos , Metabolismo de los Lípidos , Masculino , Palmitatos/metabolismo , Triglicéridos/metabolismo
3.
Mol Oncol ; 12(9): 1623-1638, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30099850

RESUMEN

Breast cancer (BrCa) metabolism is geared toward biomass synthesis and maintenance of reductive capacity. Changes in glucose and glutamine metabolism in BrCa have been widely reported, yet the contribution of fatty acids (FAs) in BrCa biology remains to be determined. We recently reported that adipocyte coculture alters MCF-7 and MDA-MB-231 cell metabolism and promotes proliferation and migration. Since adipocytes are FA-rich, and these FAs are transferred to BrCa cells, we sought to elucidate the FA metabolism of BrCa cells and their response to FA-rich environments. MCF-7 and MDA-MB-231 cells incubated in serum-containing media supplemented with FAs accumulate extracellular FAs as intracellular triacylglycerols (TAG) in a dose-dependent manner, with MDA-MB-231 cells accumulating more TAG. The differences in TAG levels were a consequence of distinct differences in intracellular partitioning of FAs, and not due to differences in the rate of FA uptake. Specifically, MCF-7 cells preferentially partition FAs into mitochondrial oxidation, whereas MDA-MB-231 cells partition FAs into TAG synthesis. These differences in intracellular FA handling underpin differences in the sensitivity to palmitate-induced lipotoxicity, with MDA-MB-231 cells being highly sensitive, whereas MCF-7 cells are partially protected. The attenuation of palmitate-induced lipotoxicity in MCF-7 cells was reversed by inhibition of FA oxidation. Pretreatment of MDA-MB-231 cells with FAs increased TAG synthesis and reduced palmitate-induced apoptosis. Our results provide novel insight into the potential influences of obesity on BrCa biology, highlighting distinct differences in FA metabolism in MCF-7 and MDA-MB-231 cells and how lipid-rich environments modulate these effects.


Asunto(s)
Apoptosis/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Ácidos Grasos/metabolismo , Obesidad/metabolismo , Palmitatos/farmacología , Triglicéridos/biosíntesis , Neoplasias de la Mama/etiología , Carnitina O-Palmitoiltransferasa/metabolismo , Proliferación Celular/efectos de los fármacos , Receptor alfa de Estrógeno/metabolismo , Femenino , Humanos , Lipasa/biosíntesis , Lipólisis , Células MCF-7 , Mitocondrias/metabolismo , Obesidad/complicaciones , Ácido Oléico/farmacología , Fosforilación Oxidativa , Transducción de Señal/efectos de los fármacos
4.
Trends Mol Med ; 23(5): 381-392, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28330687

RESUMEN

The tumor stroma is a heterogeneous ecosystem comprising matrix, fibroblasts, and immune cells and has an important role in cancer progression. Adipocytes constitute a major component of breast stroma, and significant emerging evidence demonstrates a reciprocal metabolic adaptation between stromal adipocytes and breast cancer (BC) cells. Recent observations promote a model where adipocytes respond to cancer cell-derived endocrine and paracrine signaling to provide metabolic substrates, which in turn drive enhanced cancer cell proliferation, invasion, and treatment resistance. Further defining the mechanisms that underpin this dynamic interaction between stromal adipocytes and BC cells, especially in the context of obesity, may identify novel therapeutic strategies. These will become increasingly important in addressing the clinical challenges presented by obesity and metabolic syndromes.


Asunto(s)
Adipocitos/metabolismo , Neoplasias de la Mama/metabolismo , Síndrome Metabólico/metabolismo , Adipocitos/fisiología , Neoplasias de la Mama/inmunología , Femenino , Humanos , Modelos Biológicos , Obesidad/inmunología , Obesidad/metabolismo , Células del Estroma/metabolismo , Células del Estroma/fisiología
5.
Cancer Metab ; 5: 2, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28163917

RESUMEN

BACKGROUND: Pancreatic cancer has a five-year survival rate of ~8%, with characteristic molecular heterogeneity and restricted treatment options. Targeting metabolism has emerged as a potentially effective therapeutic strategy for cancers such as pancreatic cancer, which are driven by genetic alterations that are not tractable drug targets. Although somatic mitochondrial genome (mtDNA) mutations have been observed in various tumors types, understanding of metabolic genotype-phenotype relationships is limited. METHODS: We deployed an integrated approach combining genomics, metabolomics, and phenotypic analysis on a unique cohort of patient-derived pancreatic cancer cell lines (PDCLs). Genome analysis was performed via targeted sequencing of the mitochondrial genome (mtDNA) and nuclear genes encoding mitochondrial components and metabolic genes. Phenotypic characterization of PDCLs included measurement of cellular oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) using a Seahorse XF extracellular flux analyser, targeted metabolomics and pathway profiling, and radiolabelled glutamine tracing. RESULTS: We identified 24 somatic mutations in the mtDNA of 12 patient-derived pancreatic cancer cell lines (PDCLs). A further 18 mutations were identified in a targeted study of ~1000 nuclear genes important for mitochondrial function and metabolism. Comparison with reference datasets indicated a strong selection bias for non-synonymous mutants with predicted functional effects. Phenotypic analysis showed metabolic changes consistent with mitochondrial dysfunction, including reduced oxygen consumption and increased glycolysis. Metabolomics and radiolabeled substrate tracing indicated the initiation of reductive glutamine metabolism and lipid synthesis in tumours. CONCLUSIONS: The heterogeneous genomic landscape of pancreatic tumours may converge on a common metabolic phenotype, with individual tumours adapting to increased anabolic demands via different genetic mechanisms. Targeting resulting metabolic phenotypes may be a productive therapeutic strategy.

6.
Cancer Metab ; 5: 1, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28101337

RESUMEN

BACKGROUND: Obesity is associated with increased recurrence and reduced survival of breast cancer. Adipocytes constitute a significant component of breast tissue, yet their role in provisioning metabolic substrates to support breast cancer progression is poorly understood. RESULTS: Here, we show that co-culture of breast cancer cells with adipocytes revealed cancer cell-stimulated depletion of adipocyte triacylglycerol. Adipocyte-derived free fatty acids were transferred to breast cancer cells, driving fatty acid metabolism via increased CPT1A and electron transport chain complex protein levels, resulting in increased proliferation and migration. Notably, fatty acid transfer to breast cancer cells was enhanced from "obese" adipocytes, concomitant with increased stimulation of cancer cell proliferation and migration. This adipocyte-stimulated breast cancer cell proliferation was dependent on lipolytic processes since HSL/ATGL knockdown attenuated cancer cell responses. CONCLUSIONS: These findings highlight a novel and potentially important role for adipocyte lipolysis in the provision of metabolic substrates to breast cancer cells, thereby supporting cancer progression.

7.
Bioorg Med Chem ; 23(24): 7676-84, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26616289

RESUMEN

The three peroxisome proliferator-activated receptor (PPAR) isoforms; PPARα, PPARγ and PPARδ, play central roles in lipid metabolism and glucose homeostasis. Dual PPARα/γ agonists, which stimulate both PPARα and PPARγ isoforms to similar extents, are gaining popularity as it is believed that they are able to ameliorate the unwanted side effects of selective PPARα and PPARγ agonists; and may also be used to treat dyslipidemia and type 2 diabetes mellitus simultaneously. In this study, virtual screening of natural product libraries, using both structure-based and ligand-based drug discovery approaches, identified ten potential dual PPARα/γ agonist lead compounds (9-13 and 16-20). In vitro assays confirmed these compounds to show no statistically significant toxicity to cells, with the exception of compound 12 which inhibited cell growth to 74.5%±3.5 and 54.1%±3.7 at 50µM and 100µM, respectively. In support of their potential as dual PPARα/γ agonists, all ten compounds upregulated the expression of cholesterol transporters ABCA1 and ABCG1 in THP-1 macrophages, with indoline derivative 16 producing the greatest elevation (2.3-fold; 3.3-fold, respectively). Furthermore, comparable to the activity of established PPARα and PPARγ agonists, compound 16 stimulated triacylglycerol accumulation during 3T3-L1 adipocyte differentiation as well as fatty acid ß-oxidation in HuH7 hepatocytes.


Asunto(s)
Metabolismo de los Lípidos/efectos de los fármacos , PPAR alfa/agonistas , PPAR gamma/agonistas , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Células 3T3-L1 , Animales , Línea Celular , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diseño de Fármacos , Células HEK293 , Humanos , Ligandos , Ratones , Simulación del Acoplamiento Molecular , PPAR alfa/metabolismo , PPAR gamma/metabolismo
8.
Biomed Res Int ; 2015: 274585, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25866768

RESUMEN

Currently, there is renewed interest in elucidating the metabolic characteristics of cancer and how these characteristics may be exploited as therapeutic targets. Much attention has centered on glucose, glutamine and de novo lipogenesis, yet the metabolism of fatty acids that arise from extracellular, as well as intracellular, stores as triacylglycerol has received much less attention. This review focuses on the key pathways of fatty acid metabolism, including uptake, esterification, lipolysis, and mitochondrial oxidation, and how the regulators of these pathways are altered in cancer. Additionally, we discuss the potential link that fatty acid metabolism may serve between obesity and changes in cancer progression.


Asunto(s)
Ácidos Grasos/metabolismo , Neoplasias/metabolismo , Obesidad/metabolismo , Animales , Humanos , Neoplasias/patología , Obesidad/patología
9.
J Pathol ; 236(3): 278-89, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25693838

RESUMEN

Glutamine is conditionally essential in cancer cells, being utilized as a carbon and nitrogen source for macromolecule production, as well as for anaplerotic reactions fuelling the tricarboxylic acid (TCA) cycle. In this study, we demonstrated that the glutamine transporter ASCT2 (SLC1A5) is highly expressed in prostate cancer patient samples. Using LNCaP and PC-3 prostate cancer cell lines, we showed that chemical or shRNA-mediated inhibition of ASCT2 function in vitro decreases glutamine uptake, cell cycle progression through E2F transcription factors, mTORC1 pathway activation and cell growth. Chemical inhibition also reduces basal oxygen consumption and fatty acid synthesis, showing that downstream metabolic function is reliant on ASCT2-mediated glutamine uptake. Furthermore, shRNA knockdown of ASCT2 in PC-3 cell xenografts significantly inhibits tumour growth and metastasis in vivo, associated with the down-regulation of E2F cell cycle pathway proteins. In conclusion, ASCT2-mediated glutamine uptake is essential for multiple pathways regulating the cell cycle and cell growth, and is therefore a putative therapeutic target in prostate cancer.


Asunto(s)
Sistema de Transporte de Aminoácidos ASC/genética , Regulación Neoplásica de la Expresión Génica , Glutamina/metabolismo , Neoplasias de la Próstata/genética , Sistema de Transporte de Aminoácidos ASC/antagonistas & inhibidores , Sistema de Transporte de Aminoácidos ASC/metabolismo , Animales , Transporte Biológico , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Regulación hacia Abajo , Ácidos Grasos/metabolismo , Técnicas de Silenciamiento del Gen , Xenoinjertos , Humanos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Desnudos , Antígenos de Histocompatibilidad Menor , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Metástasis de la Neoplasia , Oxígeno/metabolismo , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/prevención & control , ARN Interferente Pequeño , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
10.
J Steroid Biochem Mol Biol ; 144 Pt A: 232-6, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24189546

RESUMEN

Vitamin D status, measured as serum 25-hydroxyvitamin D (25OHD) concentration, is determined by rates of input and of degradation. The half-life of 25OHD is surprisingly long for a steroid and much longer than its blood transporter, vitamin D binding protein. There is some evidence to suggest that vitamin D itself is stored in fat, whereas 25OHD concentrations are usually related to muscle-related parameters such as lean body mass and exercise. Both muscle and fat cells come from the mesenchymal cell lineage. We recently published evidence for net uptake of 25OHD into differentiated muscle cells, in a process that was megalin dependent, and speculated that this uptake might contribute to the extended half-life of 25OHD. Whether 25OHD is also taken up into cells of the adipocyte lineage is not clear. In the current study, we used the C2 muscle cell line as a source of myoblasts that were differentiated in culture to myotubes and 3T3-L1 pre-adipocytes that were differentiated into adipocytes in culture. We incubated the cells with trititated 25OHD and measured net uptake 4 and 16h afterwards. Differentiated myotubes took up labeled 25OHD in a time-dependent process to a far greater extent than myoblasts. In contrast, pre-adipocytes, but not differentiated adipocytes, accumulated labeled 25OHD in a time-dependent manner, though to a lesser extent than myotubes. Myotubes, but not myoblasts, showed megalin expression by immunohistochemistry. Pre-adipocytes, but not adipocytes, also showed expression of megalin. Since skeletal muscle consists mainly of differentiated muscle cells, while adipose tissue is mainly differentiated fat cells, it seems likely that muscle, but not fat tissue, provides a large extravascular pool through which 25OHD circulates and that this protects 25OHD from degradation. This article is part of a Special Issue entitled '16th Vitamin D Workshop'.


Asunto(s)
Adipocitos/metabolismo , Músculo Esquelético/metabolismo , Vitamina D/análogos & derivados , Adipocitos/citología , Animales , Humanos , Músculo Esquelético/citología , Vitamina D/administración & dosificación , Vitamina D/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...