Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38600813

RESUMEN

We investigated low-frequency current fluctuations, i.e., electronic noise, in FePS3 van der Waals layered antiferromagnetic semiconductor. The noise measurements have been used as noise spectroscopy for advanced materials characterization of the charge carrier dynamics affected by spin ordering and trapping states. Owing to the high resistivity of the material, we conducted measurements on vertical device configuration. The measured noise spectra reveal pronounced Lorentzian peaks of two different origins. One peak is observed only near the Néel temperature, and it is attributed to the corresponding magnetic phase transition. The second Lorentzian peak, visible in the entire measured temperature range, has characteristics of the trap-assisted generation-recombination processes similar to those in conventional semiconductors but shows a clear effect of the spin order reconfiguration near the Néel temperature. The obtained results contribute to understanding the electron and spin dynamics in this type of antiferromagnetic semiconductors and demonstrate the potential of electronic noise spectroscopy for advanced materials characterization.

2.
Nat Commun ; 14(1): 3190, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37268627

RESUMEN

The development of cryogenic semiconductor electronics and superconducting quantum computing requires composite materials that can provide both thermal conduction and thermal insulation. We demonstrated that at cryogenic temperatures, the thermal conductivity of graphene composites can be both higher and lower than that of the reference pristine epoxy, depending on the graphene filler loading and temperature. There exists a well-defined cross-over temperature-above it, the thermal conductivity of composites increases with the addition of graphene; below it, the thermal conductivity decreases with the addition of graphene. The counter-intuitive trend was explained by the specificity of heat conduction at low temperatures: graphene fillers can serve as, both, the scattering centers for phonons in the matrix material and as the conduits of heat. We offer a physical model that explains the experimental trends by the increasing effect of the thermal boundary resistance at cryogenic temperatures and the anomalous thermal percolation threshold, which becomes temperature dependent. The obtained results suggest the possibility of using graphene composites for, both, removing the heat and thermally insulating components at cryogenic temperatures-a capability important for quantum computing and cryogenically cooled conventional electronics.

3.
Adv Mater ; 35(19): e2209708, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36812299

RESUMEN

A unique class of advanced materials-quantum composites based on polymers with fillers composed of a van der Waals quantum material that reveals multiple charge-density-wave quantum condensate phases-is demonstrated. Materials that exhibit quantum phenomena are typically crystalline, pure, and have few defects because disorder destroys the coherence of the electrons and phonons, leading to collapse of the quantum states. The macroscopic charge-density-wave phases of filler particles after multiple composite processing steps are successfully preserved in this work. The prepared composites display strong charge-density-wave phenomena even above room temperature. The dielectric constant experiences more than two orders of magnitude enhancement while the material maintains its electrically insulating properties, opening a venue for advanced applications in energy storage and electronics. The results present a conceptually different approach for engineering the properties of materials, extending the application domain for van der Waals materials.

4.
ACS Nano ; 16(11): 18968-18977, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36315105

RESUMEN

We report on the electrical gating of the charge-density-wave phases and current in h-BN-capped three-terminal 1T-TaS2 heterostructure devices. It is demonstrated that the application of a gate bias can shift the source-drain current-voltage hysteresis associated with the transition between the nearly commensurate and incommensurate charge-density-wave phases. The evolution of the hysteresis and the presence of abrupt spikes in the current while sweeping the gate voltage suggest that the effect is electrical rather than self-heating. We attribute the gating to an electric-field effect on the commensurate charge-density-wave domains in the atomic planes near the gate dielectric. The transition between the nearly commensurate and incommensurate charge-density-wave phases can be induced by both the source-drain current and the electrostatic gate. Since the charge-density-wave phases are persistent in 1T-TaS2 at room temperature, one can envision memory applications of such devices when scaled down to the dimensions of individual commensurate domains and few-atomic plane thicknesses.

5.
ACS Appl Mater Interfaces ; 14(37): 42223-42231, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36083635

RESUMEN

We report the results of the investigation of bulk and surface acoustic phonons in the undoped and boron-doped single-crystal diamond films using the Brillouin-Mandelstam light scattering spectroscopy. The evolution of the optical phonons in the same set of samples was monitored with Raman spectroscopy. It was found that the frequency and the group velocity of acoustic phonons decrease nonmonotonically with the increasing boron doping concentration, revealing pronounced phonon softening. The change in the velocity of the shear-horizontal and the high-frequency pseudo-longitudinal acoustic phonons in the degenerately doped diamond, as compared to that in the undoped diamond, was as large as ∼15% and ∼12%, respectively. As a result of boron doping, the velocity of the bulk longitudinal and transverse acoustic phonons decreased correspondingly. The frequency of the optical phonons was unaffected at low boron concentration but experienced a strong decrease at the high doping level. The density-functional-theory calculations of the phonon band structure for the pristine and highly doped samples confirm the phonon softening as a result of boron doping in diamond. The obtained results have important implications for thermal transport in heavily doped diamond, which is a promising material for ultra-wide-band-gap electronics.

6.
ACS Appl Mater Interfaces ; 14(31): 36178-36188, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35895030

RESUMEN

The goal of this study is to determine how bulk vibrational properties and interfacial structure affect thermal transport at interfaces in wide band gap semiconductor systems. Time-domain thermoreflectance measurements of thermal conductance G are reported for interfaces between nitride metals and group IV (diamond, SiC, Si, and Ge) and group III-V (AlN, GaN, and cubic BN) materials. Group IV and group III-V semiconductors have systematic differences in vibrational properties. Similarly, HfN and TiN are also vibrationally distinct from each other. Therefore, comparing G of interfaces formed from these materials provides a systematic test of how vibrational similarity between two materials affects interfacial transport. For HfN interfaces, we observe conductances between 140 and 300 MW m-2 K-1, whereas conductances between 200 and 800 MW m-2 K-1 are observed for TiN interfaces. TiN forms exceptionally conductive interfaces with GaN, AlN, and diamond, that is, G > 400 MW m-2 K-1. Surprisingly, interfaces formed between vibrationally similar and dissimilar materials are similarly conductive. Thus, vibrational similarity between two materials is not a necessary requirement for high G. Instead, the time-domain thermoreflectance experiment (TDTR) data, an analysis of bulk vibrational properties, and transmission electron microscopy (TEM) suggest that G depends on two other material properties, namely, the bulk phonon properties of the vibrationally softer of the two materials and the interfacial structure. To determine how G depends on interfacial structure, TDTR and TEM measurements were conducted on a series of TiN/AlN samples prepared in different ways. Interfacial disorder at a TiN/AlN interface adds a thermal resistance equivalent to ∼1 nm of amorphous material. Our findings improve fundamental understanding of what material properties are most important for thermally conductive interfaces. They also provide benchmarks for the thermal conductance of interfaces with wide band gap semiconductors.

7.
Nanoscale ; 14(19): 7242-7249, 2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35514294

RESUMEN

The nature of the low-frequency 1/f noise in electronic materials and devices is one of the oldest unsolved physical problems (f is the frequency). The fundamental question of the noise source-fluctuations in the mobility vs. number of charge carriers-is still debated. While there are several pieces of evidence to prove that the 1/f noise in semiconductors is due to the fluctuations in the number of the charge carriers, there is no direct evidence of the mobility fluctuations as the source of 1/f noise in any material. Herein, we measured noise in an h-BN encapsulated graphene transistor under the conditions of geometrical magnetoresistance to directly assess the mechanism of low-frequency electronic current fluctuations. It was found that the relative noise spectral density of the graphene resistance fluctuations depends non-monotonically on the magnetic field (B) with a minimum at approximately µ0B ≅ 1 (µ0 is the electron mobility). This observation proves unambiguously that mobility fluctuations are the dominant mechanism of electronic noise in high-quality graphene. Our results are important for all proposed applications of graphene in electronics and add to the fundamental understanding of the 1/f noise origin in any electronic device.

8.
Nanoscale ; 14(16): 6133-6143, 2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35388816

RESUMEN

We conducted a tip-enhanced Raman scattering spectroscopy (TERS) and photoluminescence (PL) study of quasi-1D TaSe3-δ nanoribbons exfoliated onto gold substrates. At a selenium deficiency of δ ∼ 0.25 (Se/Ta = 2.75), the nanoribbons exhibit a strong, broad PL peak centered around ∼920 nm (1.35 eV), suggesting their semiconducting behavior. Such nanoribbons revealed a strong TERS response under 785 nm (1.58 eV) laser excitation, allowing for their nanoscale spectroscopic imaging. Nanoribbons with a smaller selenium deficiency (Se/Ta = 2.85, δ ∼ 0.15) did not show any PL or TERS response. The confocal Raman spectra of these samples agree with the previously-reported spectra of metallic TaSe3. The differences in the optical response of the nanoribbons examined in this study suggest that even small variations in Se content can induce changes in electronic band structure, causing samples to exhibit either metallic or semiconducting character. The temperature-dependent electrical measurements of devices fabricated with both types of materials corroborate these observations. The density-functional-theory calculations revealed that substitution of an oxygen atom in a Se vacancy can result in band gap opening and thus enable the transition from a metal to a semiconductor. However, the predicted band gap is substantially smaller than that derived from the PL data. These results indicate that the properties of van der Waals materials can vary significantly depending on stoichiometry, defect types and concentration, and possibly environmental and substrate effects. In view of this finding, local probing of nanoribbon properties with TERS becomes essential to understanding such low-dimensional systems.

9.
ACS Nano ; 16(4): 6325-6333, 2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35324143

RESUMEN

We report on the preparation of inks containing fillers derived from quasi-two-dimensional charge-density-wave materials, their application for inkjet printing, and the evaluation of their electronic properties in printed thin-film form. The inks were prepared by liquid-phase exfoliation of CVT-grown 1T-TaS2 crystals to produce fillers with nm-scale thickness and µm-scale lateral dimensions. Exfoliated 1T-TaS2 was dispersed in a mixture of isopropyl alcohol and ethylene glycol to allow fine-tuning of filler particles thermophysical properties for inkjet printing. The temperature-dependent electrical and current fluctuation measurements of printed thin films demonstrated that the charge-density-wave properties of 1T-TaS2 are preserved after processing. The functionality of the printed thin-film devices can be defined by the nearly commensurate to the commensurate charge-density-wave phase transition of individual exfoliated 1T-TaS2 filler particles rather than by electron-hopping transport between them. The obtained results are important for the development of printed electronics with diverse functionality achieved by the incorporation of quasi-two-dimensional van der Waals quantum materials.

10.
ACS Appl Mater Interfaces ; 13(44): 53073-53082, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34705408

RESUMEN

We report on the investigation of thermal transport in noncured silicone composites with graphene fillers of different lateral dimensions. Graphene fillers are comprised of few-layer graphene flakes with lateral sizes in the range from 400 to 1200 nm and the number of atomic planes from 1 to ∼100. The distribution of the lateral dimensions and thicknesses of graphene fillers has been determined via atomic force microscopy statistics. It was found that in the examined range of the lateral dimensions, the thermal conductivity of the composites increases with increasing size of the graphene fillers. The observed difference in thermal properties can be related to the average gray phonon mean free path in graphene, which has been estimated to be around ∼800 nm at room temperature. The thermal contact resistance of composites with graphene fillers of 1200 nm lateral dimensions was also smaller than that of composites with graphene fillers of 400 nm lateral dimensions. The effects of the filler loading fraction and the filler size on the thermal conductivity of the composites were rationalized within the Kanari model. The obtained results are important for the optimization of graphene fillers for applications in thermal interface materials for heat removal from high-power-density electronics.

11.
ACS Appl Mater Interfaces ; 13(39): 47033-47042, 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34553916

RESUMEN

We report on the fabrication and characterization of electronic devices printed with inks of quasi-one-dimensional (1D) van der Waals materials. The quasi-1D van der Waals materials are characterized by 1D motifs in their crystal structure, which allow for their exfoliation into bundles of atomic chains. The ink was prepared by the liquid-phase exfoliation of crystals of TiS3 into quasi-1D nanoribbons dispersed in a mixture of ethanol and ethylene glycol. The temperature-dependent electrical measurements indicate that the electron transport in the printed devices is dominated by the electron hopping mechanisms. The low-frequency electronic noise in the printed devices is of 1/fγ-type with γ ∼ 1 near-room temperature (f is the frequency). The abrupt changes in the temperature dependence of the noise spectral density and γ parameter can be indicative of the phase transition in individual TiS3 nanoribbons as well as modifications in the hopping transport regime. The obtained results attest to the potential of quasi-1D van der Waals materials for applications in printed electronics.

12.
Nanomaterials (Basel) ; 11(7)2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34203500

RESUMEN

We report on experimental investigation of thermal contact resistance, RC, of the noncuring graphene thermal interface materials with the surfaces characterized by different degree of roughness, Sq. It is found that the thermal contact resistance depends on the graphene loading, ξ, non-monotonically, achieving its minimum at the loading fraction of ξ ~15 wt %. Decreasing the surface roughness by Sq~1 µm results in approximately the factor of ×2 decrease in the thermal contact resistance for this graphene loading. The obtained dependences of the thermal conductivity, KTIM, thermal contact resistance, RC, and the total thermal resistance of the thermal interface material layer on ξ and Sq can be utilized for optimization of the loading fraction of graphene for specific materials and roughness of the connecting surfaces. Our results are important for the thermal management of high-power-density electronics implemented with diamond and other wide-band-gap semiconductors.

13.
ACS Appl Mater Interfaces ; 13(18): 21527-21533, 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33929179

RESUMEN

We report on the preparation of flexible polymer composite films with aligned metallic fillers composed of atomic chain bundles of quasi-one-dimensional (1D) van der Waals material, tantalum triselenide (TaSe3). The material functionality, embedded at the nanoscale level, is achieved by mimicking the design of an electromagnetic aperture grid antenna. The processed composites employ chemically exfoliated TaSe3 nanowires as the grid building blocks incorporated within the thin film. Filler alignment is achieved using the "blade coating" method. Measurements conducted in the X-band frequency range demonstrate that the electromagnetic transmission through such films can be varied significantly by changing the relative orientations of the quasi-1D fillers and the polarization of the electromagnetic wave. We argue that such polarization-sensitive polymer films with unique quasi-1D metallic fillers are applicable to advanced electromagnetic interference shielding in future communication systems.

14.
Adv Mater ; 33(11): e2007286, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33576041

RESUMEN

Polymer composite films containing fillers comprising quasi-1D van der Waals materials, specifically transition metal trichalcogenides with 1D structural motifs that enable their exfoliation into bundles of atomic threads, are reported. These nanostructures are characterized by extremely large aspect ratios of up to ≈106 . The polymer composites with low loadings of quasi-1D TaSe3 fillers (<3 vol%) reveal excellent electromagnetic interference shielding in the X-band GHz and extremely high frequency sub-THz frequency ranges, while remaining DC electrically insulating. The unique electromagnetic shielding characteristics of these films are attributed to effective coupling of the electromagnetic waves to the high-aspect-ratio electrically conductive TaSe3 atomic-thread bundles even when the filler concentration is below the electrical percolation threshold. These novel films are promising for high-frequency communication technologies, which require electromagnetic shielding films that are flexible, lightweight, corrosion resistant, inexpensive, and electrically insulating.

15.
Nanotechnology ; 32(14): 142003, 2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33049724

RESUMEN

We review the current state-of-the-art graphene-enhanced thermal interface materials for the management of heat in the next generation of electronics. Increased integration densities, speed and power of electronic and optoelectronic devices require thermal interface materials with substantially higher thermal conductivity, improved reliability, and lower cost. Graphene has emerged as a promising filler material that can meet the demands of future high-speed and high-powered electronics. This review describes the use of graphene as a filler in curing and non-curing polymer matrices. Special attention is given to strategies for achieving the thermal percolation threshold with its corresponding characteristic increase in the overall thermal conductivity. Many applications require high thermal conductivity of composites, while simultaneously preserving electrical insulation. A hybrid filler approach, using graphene and boron nitride, is presented as a possible technology providing for the independent control of electrical and thermal conduction. The reliability and lifespan performance of thermal interface materials is an important consideration towards the determination of appropriate practical applications. The present review addresses these issues in detail, demonstrating the promise of graphene-enhanced thermal interface materials compared to alternative technologies.

16.
ACS Appl Mater Interfaces ; 12(34): 38744-38750, 2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32805977

RESUMEN

The controlled tunability of superconductivity in low-dimensional materials may enable new quantum devices. Particularly in triplet or topological superconductors, tunneling devices such as Josephson junctions, etc., can demonstrate exotic functionalities. The tunnel barrier, an insulating or normal material layer separating two superconductors, is a key component for the junctions. Thin layers of NbSe2 have been shown as a superconductor with strong spin orbit coupling, which can give rise to topological superconductivity if driven by a large magnetic exchange field. Here we demonstrate the superconductor-insulator transitions in epitaxially grown few-layer NbSe2 with wafer-scale uniformity on insulating substrates. We provide the electrical transport, Raman spectroscopy, cross-sectional transmission electron microscopy, and X-ray diffraction characterizations of the insulating phase. We show that the superconductor-insulator transition is driven by strain, which also causes characteristic energy shifts of the Raman modes. Our observation paves the way for high-quality heterojunction tunnel barriers to be seamlessly built into epitaxial NbSe2 itself, thereby enabling highly scalable tunneling devices for superconductor-based quantum electronics.

17.
ACS Appl Mater Interfaces ; 12(25): 28635-28644, 2020 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-32476399

RESUMEN

We report on the synthesis of the epoxy-based composites with graphene fillers and test their electromagnetic shielding efficiency by the quasi-optic free-space method in the extremely high-frequency (EHF) band (220-325 GHz). The curing adhesive composites were produced by a scalable technique with a mixture of single-layer and few-layer graphene layers of few-micrometer lateral dimensions. It was found that the electromagnetic transmission, T, is low even at small concentrations of graphene fillers: T<1% at a frequency of 300 GHz for a composite with only ϕ = 1 wt% graphene. The main shielding mechanism in composites with the low graphene loading is absorption. The composites of 1 mm in thickness and a graphene loading of 8 wt% provide an excellent electromagnetic shielding of 70 dB in the sub-terahertz EHF frequency band with negligible energy reflection to the environment. The developed lightweight adhesive composites with graphene fillers can be used as electromagnetic absorbers in the high-frequency microwave radio relays, microwave remote sensors, millimeter wave scanners, and wireless local area networks.

18.
ACS Nano ; 14(5): 5170-5178, 2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32338870

RESUMEN

In this Perspective, I present a concise account concerning the emergence of the research field investigating the phononic and thermal properties of graphene and related materials, covering the refinement of our understanding of phonon transport in two-dimensional material systems. The initial interest in graphene originated from its unique linear energy dispersion for electrons, revealed in exceptionally high electron mobility, and other exotic electronic and optical properties. Electrons are not the only elemental excitations influenced by a reduction in dimensionality. Phonons-quanta of crystal lattice vibrations-also demonstrate an extreme sensitivity to the number of atomic planes in the few-layer graphene, resulting in unusual heat conduction properties. I outline recent theoretical and experimental developments in the field and discuss how the prospects for the mainstream electronic application of graphene, enabled by its high electron mobility, gradually gave way to emerging real-life products based on few-layer graphene, which utilize its unique heat conduction rather than its electrical conduction properties.

19.
Nanotechnology ; 31(30): 30LT01, 2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32240999

RESUMEN

We report the results of Brillouin-Mandelstam spectroscopy and Mueller matrix spectroscopic ellipsometry of the nanoscale 'pillar with the hat' periodic silicon structures, revealing intriguing phononic and photonic-phoxonic-properties. It has been theoretically shown that periodic structures with properly tuned dimensions can act simultaneously as phononic and photonic crystals, strongly affecting the light-matter interactions. Acoustic phonon states can be tuned by external boundaries, either as a result of phonon confinement effects in individual nanostructures, or as a result of artificially induced external periodicity, as in the phononic crystals. The shape of the nanoscale pillar array was engineered to ensure the interplay of both effects. The Brillouin-Mandelstam spectroscopy data indicated strong flattening of the acoustic phonon dispersion in the frequency range from 2 GHz to 20 GHz and the phonon wave vector extending to the higher-order Brillouin zones. The specifics of the phonon dispersion dependence on the pillar arrays' orientation suggest the presence of both periodic modulation and spatial localization effects for the acoustic phonons. The ellipsometry data reveal a distinct scatter pattern of four-fold symmetry due to nanoscale periodicity of the pillar arrays. Our results confirm the dual functionality of the nanostructured shape-engineered structure and indicate a possible new direction for fine-tuning the light-matter interaction in the next generation of photonic, optoelectronic, and phononic devices.

20.
ACS Nano ; 14(2): 2424-2435, 2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-31951116

RESUMEN

We report results of investigation of the phonon and thermal properties of the exfoliated films of layered single crystals of antiferromagnetic FePS3 and MnPS3 semiconductors. Raman spectroscopy was conducted using three different excitation lasers with wavelengths of 325 nm (UV), 488 nm (blue), and 633 nm (red). UV-Raman spectroscopy reveals spectral features which are not detectable via visible Raman light scattering. The thermal conductivity of FePS3 and MnPS3 thin films was measured by two different techniques: the steady-state Raman optothermal and transient time-resolved magneto-optical Kerr effect. The Raman optothermal measurements provided the orientation-average thermal conductivity of FePS3 to be 1.35 ± 0.32 W m-1 K-1 at room temperature. The transient measurements revealed that the through-plane and in-plane thermal conductivity of FePS3 are 0.85 ± 0.15 and 2.7 ± 0.3 W m-1 K-1, respectively. The films of MnPS3 have higher thermal conductivity of 1.1 ± 0.2 W m-1 K-1 through-plane and 6.3 ± 1.7 W m-1 K-1 in-plane. The data obtained by the two techniques are in agreement and reveal strong thermal anisotropy of the films and the dominance of phonon contribution to heat conduction. The obtained results are important for the interpretation of electric switching experiments with antiferromagnetic materials as well as for the proposed applications of the antiferromagnetic semiconductors in spintronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...