Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Transl Psychiatry ; 1: e9, 2011 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-22832404

RESUMEN

Anxiety disorders are prevalent and disabling yet understudied from a genetic standpoint, compared with other major psychiatric disorders such as bipolar disorder and schizophrenia. The fact that they are more common, diverse and perceived as embedded in normal life may explain this relative oversight. In addition, as for other psychiatric disorders, there are technical challenges related to the identification and validation of candidate genes and peripheral biomarkers. Human studies, particularly genetic ones, are susceptible to the issue of being underpowered, because of genetic heterogeneity, the effect of variable environmental exposure on gene expression, and difficulty of accrual of large, well phenotyped cohorts. Animal model gene expression studies, in a genetically homogeneous and experimentally tractable setting, can avoid artifacts and provide sensitivity of detection. Subsequent translational integration of the animal model datasets with human genetic and gene expression datasets can ensure cross-validatory power and specificity for illness. We have used a pharmacogenomic mouse model (involving treatments with an anxiogenic drug--yohimbine, and an anti-anxiety drug--diazepam) as a discovery engine for identification of anxiety candidate genes as well as potential blood biomarkers. Gene expression changes in key brain regions for anxiety (prefrontal cortex, amygdala and hippocampus) and blood were analyzed using a convergent functional genomics (CFG) approach, which integrates our new data with published human and animal model data, as a translational strategy of cross-matching and prioritizing findings. Our work identifies top candidate genes (such as FOS, GABBR1, NR4A2, DRD1, ADORA2A, QKI, RGS2, PTGDS, HSPA1B, DYNLL2, CCKBR and DBP), brain-blood biomarkers (such as FOS, QKI and HSPA1B), pathways (such as cAMP signaling) and mechanisms for anxiety disorders--notably signal transduction and reactivity to environment, with a prominent role for the hippocampus. Overall, this work complements our previous similar work (on bipolar mood disorders and schizophrenia) conducted over the last decade. It concludes our programmatic first pass mapping of the genomic landscape of the triad of major psychiatric disorder domains using CFG, and permitted us to uncover the significant genetic overlap between anxiety and these other major psychiatric disorders, notably the under-appreciated overlap with schizophrenia. PDE10A, TAC1 and other genes uncovered by our work provide a molecular basis for the frequently observed clinical co-morbidity and interdependence between anxiety and other major psychiatric disorders, and suggest schizo-anxiety as a possible new nosological domain.


Asunto(s)
Trastornos de Ansiedad/genética , Genes , Transducción de Señal/genética , Animales , Trastornos de Ansiedad/psicología , Biomarcadores/metabolismo , AMP Cíclico/genética , Modelos Animales de Enfermedad , Genómica/métodos , Humanos , Ratones , Modelos Animales , Esquizofrenia/genética , Investigación Biomédica Traslacional/métodos
2.
Am J Med Genet B Neuropsychiatr Genet ; 147B(2): 134-66, 2008 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-18247375

RESUMEN

We had previously identified the clock gene D-box binding protein (Dbp) as a potential candidate gene for bipolar disorder and for alcoholism, using a Convergent Functional Genomics (CFG) approach. Here we report that mice with a homozygous deletion of DBP have lower locomotor activity, blunted responses to stimulants, and gain less weight over time. In response to a chronic stress paradigm, these mice exhibit a diametric switch in these phenotypes. DBP knockout mice are also activated by sleep deprivation, similar to bipolar patients, and that activation is prevented by treatment with the mood stabilizer drug valproate. Moreover, these mice show increased alcohol intake following exposure to stress. Microarray studies of brain and blood reveal a pattern of gene expression changes that may explain the observed phenotypes. CFG analysis of the gene expression changes identified a series of novel candidate genes and blood biomarkers for bipolar disorder, alcoholism, and stress reactivity.


Asunto(s)
Alcoholismo/genética , Trastorno Bipolar/genética , Proteínas de Unión al ADN/genética , Genoma , Factores de Transcripción/genética , Alcoholismo/epidemiología , Animales , Biomarcadores/sangre , Trastorno Bipolar/epidemiología , Trastorno Bipolar/psicología , Comorbilidad , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Ligamiento Genético , Humanos , Ratones , Ratones Transgénicos , Modelos Genéticos , Fenotipo , Privación de Sueño/metabolismo , Estrés Fisiológico/genética
3.
Am J Med Genet B Neuropsychiatr Genet ; 144B(2): 129-58, 2007 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-17266109

RESUMEN

Identifying genes for schizophrenia through classical genetic approaches has proven arduous. Here, we present a comprehensive convergent analysis that translationally integrates brain gene expression data from a relevant pharmacogenomic mouse model (involving treatments with a psychomimetic agent - phencyclidine (PCP), and an anti-psychotic - clozapine), with human genetic linkage data and human postmortem brain data, as a Bayesian strategy of cross validating findings. Topping the list of candidate genes, we have three genes involved in GABA neurotransmission (GABRA1, GABBR1, and GAD2), one gene involved in glutamate neurotransmission (GRIA2), one gene involved in neuropeptide signaling (TAC1), two genes involved in synaptic function (SYN2 and KCNJ4), six genes involved in myelin/glial function (CNP, MAL, MBP, PLP1, MOBP and GFAP), and one gene involved in lipid metabolism (LPL). These data suggest that schizophrenia is primarily a disorder of brain functional and structural connectivity, with GABA neurotransmission playing a prominent role. These findings may explain the EEG gamma band abnormalities detected in schizophrenia. The analysis also revealed other high probability candidates genes (neurotransmitter signaling, other structural proteins, ion channels, signal transduction, regulatory enzymes, neuronal migration/neurite outgrowth, clock genes, transcription factors, RNA regulatory genes), pathways and mechanisms of likely importance in pathophysiology. Some of the pathways identified suggest possible avenues for augmentation pharmacotherapy of schizophrenia with other existing agents, such as benzodiazepines, anticonvulsants and lipid modulating agents. Other pathways are new potential targets for drug development. Lastly, a comparison with our earlier work on bipolar disorder illuminates the significant molecular overlap between schizophrenia and bipolar disorder.


Asunto(s)
Genómica/métodos , Esquizofrenia/genética , Animales , Conducta Animal/efectos de los fármacos , Biomarcadores , Clozapina/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Ligamiento Genético , Ácido Glutámico/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/genética , Neurotransmisores/genética , Fenciclidina/farmacología , Reproducibilidad de los Resultados , Ácido gamma-Aminobutírico/genética
4.
Pharmacogenomics J ; 7(4): 222-56, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17033615

RESUMEN

We describe a comprehensive translational approach for identifying candidate genes for alcoholism. The approach relies on the cross-matching of animal model brain gene expression data with human genetic linkage data, as well as human tissue data and biological roles data, an approach termed convergent functional genomics. An analysis of three animal model paradigms, based on inbred alcohol-preferring (iP) and alcohol-non-preferring (iNP) rats, and their response to treatments with alcohol, was used. A comprehensive analysis of microarray gene expression data from five key brain regions (frontal cortex, amygdala, caudate-putamen, nucleus accumbens and hippocampus) was carried out. The Bayesian-like integration of multiple independent lines of evidence, each by itself lacking sufficient discriminatory power, led to the identification of high probability candidate genes, pathways and mechanisms for alcoholism. These data reveal that alcohol has pleiotropic effects on multiple systems, which may explain the diverse neuropsychiatric and medical pathology in alcoholism. Some of the pathways identified suggest avenues for pharmacotherapy of alcoholism with existing agents, such as angiotensin-converting enzyme (ACE) inhibitors. Experiments we carried out in alcohol-preferring rats with an ACE inhibitor show a marked modulation of alcohol intake. Other pathways are new potential targets for drug development. The emergent overall picture is that physical and physiological robustness may permit alcohol-preferring individuals to withstand the aversive effects of alcohol. In conjunction with a higher reactivity to its rewarding effects, they may able to ingest enough of this nonspecific drug for a strong hedonic and addictive effect to occur.


Asunto(s)
Consumo de Bebidas Alcohólicas/genética , Alcoholismo/genética , Encéfalo/efectos de los fármacos , Depresores del Sistema Nervioso Central/administración & dosificación , Etanol/administración & dosificación , Redes Reguladoras de Genes/efectos de los fármacos , Genómica/métodos , Consumo de Bebidas Alcohólicas/metabolismo , Consumo de Bebidas Alcohólicas/prevención & control , Alcoholismo/tratamiento farmacológico , Alcoholismo/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Animales , Teorema de Bayes , Conducta Animal/efectos de los fármacos , Encéfalo/metabolismo , Depresores del Sistema Nervioso Central/metabolismo , Análisis por Conglomerados , Bases de Datos Genéticas , Etanol/metabolismo , Perfilación de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Lisinopril/farmacología , Lisinopril/uso terapéutico , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Ratas , Ratas Endogámicas , Reproducibilidad de los Resultados , Proyectos de Investigación , Factores de Riesgo , Autoadministración , Factores de Tiempo
5.
Cell Mol Life Sci ; 63(11): 1226-35, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16568235

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder associated with cognitive and behavioral dysfunction and is the leading cause of dementia in the elderly. Several studies have implicated molecular and cellular signaling cascades involving the serine-threonine kinase, glycogen synthase kinase beta(GSK-3beta) in the pathogenesis of AD. GSK-3beta may play an important role in the formation of neurofibrillary tangles and senile plaques, the two classical pathological hallmarks of AD. In this review, we discuss the interaction between GSK-3beta and several key molecules involved in AD, including the presenilins, amyloid precursor protein, tau, and beta-amyloid. We identify the signal transduction pathways involved in the pathogenesis of AD, including Wnt, Notch, and the PI3 kinase/Akt pathway. These may be potential therapeutic targets in AD.


Asunto(s)
Enfermedad de Alzheimer/enzimología , Enfermedad de Alzheimer/fisiopatología , Inhibidores Enzimáticos/uso terapéutico , Glucógeno Sintasa Quinasas/metabolismo , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Glucógeno Sintasa Quinasas/genética , Humanos , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...