Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Phys ; 19: 132-141, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36686215

RESUMEN

Epithelia act as a barrier against environmental stress and abrasion and in vivo they are continuously exposed to environments of various mechanical properties. The impact of this environment on epithelial integrity remains elusive. By culturing epithelial cells on 2D hydrogels, we observe a loss of epithelial monolayer integrity through spontaneous hole formation when grown on soft substrates. Substrate stiffness triggers an unanticipated mechanical switch of epithelial monolayers from tensile on soft to compressive on stiff substrates. Through active nematic modelling, we find that spontaneous half-integer defect formation underpinning large isotropic stress fluctuations initiate hole opening events. Our data show that monolayer rupture due to high tensile stress is promoted by the weakening of cell-cell junctions that could be induced by cell division events or local cellular stretching. Our results show that substrate stiffness provides feedback on monolayer mechanical state and that topological defects can trigger stochastic mechanical failure, with potential application towards a mechanistic understanding of compromised epithelial integrity during immune response and morphogenesis.

2.
Sci Adv ; 8(37): eabn5406, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36103541

RESUMEN

Three-dimensional collective epithelial rotation around a given axis represents a coordinated cellular movement driving tissue morphogenesis and transformation. Questions regarding these behaviors and their relationship with substrate curvatures are intimately linked to spontaneous active matter processes and to vital morphogenetic and embryonic processes. Here, using interdisciplinary approaches, we study the dynamics of epithelial layers lining different cylindrical surfaces. We observe large-scale, persistent, and circumferential rotation in both concavely and convexly curved cylindrical tissues. While epithelia of inverse curvature show an orthogonal switch in actomyosin network orientation and opposite apicobasal polarities, their rotational movements emerge and vary similarly within a common curvature window. We further reveal that this persisting rotation requires stable cell-cell adhesion and Rac-1-dependent cell polarity. Using an active polar gel model, we unveil the different relationships of collective cell polarity and actin alignment with curvatures, which lead to coordinated rotational behavior despite the inverted curvature and cytoskeleton order.

3.
Curr Opin Genet Dev ; 73: 101897, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35063879

RESUMEN

Biological tissues are composed of various cell types working cooperatively to perform their respective function within organs and the whole body. During development, embryogenesis followed by histogenesis relies on orchestrated division, death, differentiation and collective movements of cellular constituents. These cells are anchored to each other and/or the underlying substrate through adhesion complexes and they regulate force generation by active cytoskeleton remodelling. The resulting contractility related changes at the level of each single cell impact tissue architecture by triggering changes in cell shape, cell movement and remodelling of the surrounding environment. These out of equilibrium processes occur through the consumption of energy, allowing biological systems to be described by active matter physics. 'Active nematics' a subclass of active matter encompasses cytoskeleton filaments, bacterial and eukaryotic cells allowing them to be modelled as rod-like elements to which nematic liquid crystal theories can be applied. In this review, we will discuss the concept of active nematics to understand biological processes across subcellular and multicellular scales, from single cell organization to cell extrusion, collective cell movements, differentiation and morphogenesis.


Asunto(s)
Fenómenos Biológicos , Citoesqueleto , Movimiento Celular/genética , Forma de la Célula , Citoesqueleto/genética , Morfogénesis/genética
5.
Nat Mater ; 20(8): 1156-1166, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33603188

RESUMEN

Actomyosin machinery endows cells with contractility at a single-cell level. However, within a monolayer, cells can be contractile or extensile based on the direction of pushing or pulling forces exerted by their neighbours or on the substrate. It has been shown that a monolayer of fibroblasts behaves as a contractile system while epithelial or neural progentior monolayers behave as an extensile system. Through a combination of cell culture experiments and in silico modelling, we reveal the mechanism behind this switch in extensile to contractile as the weakening of intercellular contacts. This switch promotes the build-up of tension at the cell-substrate interface through an increase in actin stress fibres and traction forces. This is accompanied by mechanotransductive changes in vinculin and YAP activation. We further show that contractile and extensile differences in cell activity sort cells in mixtures, uncovering a generic mechanism for pattern formation during cell competition, and morphogenesis.


Asunto(s)
Actomiosina/metabolismo , Fenómenos Mecánicos , Fenómenos Biomecánicos , Movimiento Celular , Simulación por Computador , Modelos Biológicos
6.
C R Biol ; 344(4): 325-335, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-35787604

RESUMEN

Biological tissues are composed of various cell types working cooperatively to perform their respective function within organs and the whole body. During development, embryogenesis followed by histogenesis relies on orchestrated division, death, differentiation and collective movements of cellular constituents. These cells are anchored to each other and/or the underlying substrate through adhesion complexes and they regulate force generation by active cytoskeleton remodeling. The resulting changes in contractility at the level of each single cell impact tissue architecture and remodeling by triggering changes in cell shape, cell movement and remodeling of the surrounding environment. These out of equilibrium processes occur through cellular energy consumption, allowing biological systems to be described by active matter physics. Cytoskeleton filaments, bacterial and eukaryotic cells can be considered as a sub-class of active matter termed "active nematics". These biological objects can be modelled as rod-like elements to which nematic liquid crystal theories can be applied. In this work, using an analogy from liquid crystal physics, we show that cell sorting and boundary formation can be explained using differences in nematic activity. This difference in nematic activity arises from a balance of inter- and intra-cellular activity.


Les tissus biologiques sont composés de différents types de cellules qui travaillent en coopération pour remplir leur fonction respective au sein des organes et du corps entier. Au cours du développement, l'embryogenèse puis l'histogenèse reposent sur la division, la mort, la différenciation et les mouvements collectifs orchestrés des constituants cellulaires. Ces cellules sont ancrées les unes aux autres et/ou au substrat sous-jacent par des complexes d'adhésion et elles régulent la génération de force par un remodelage actif du cytosquelette. Les changements de contractilité qui en résultent au niveau de chaque cellule ont un impact sur l'architecture et le remodelage des tissus en déclenchant des changements dans la forme et le mouvement des cellules et le remodelage du milieu environnant. Ces processus sont hors d'équilibre dans la mesure où ils consomment de l'énergie, ce qui classe ces systèmes biologiques au sein de la matière active. Les filaments du cytosquelette, les cellules bactériennes et eucaryotes peuvent être considérés comme une sous-classe de matière active appelée "nématique active". Ces systèmes biologiques peuvent être décrits comme un ensemble de particules allongées auxquelles les théories des cristaux liquides nématiques peuvent être appliquées. Dans ce travail, en utilisant une analogie avec la physique des cristaux liquides, nous montrons que le tri cellulaire et la formation de frontières peuvent être expliqués par des différences d'activité nématique. Cette différence d'activité nématique résulte d'un équilibre entre l'activité inter- et intra-cellulaire.


Asunto(s)
Citoesqueleto , Reuniones Masivas , Diferenciación Celular , Movimiento Celular , Citoplasma
7.
Dev Cell ; 54(1): 75-91.e7, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32485139

RESUMEN

Epithelia are active materials where mechanical tension governs morphogenesis and homeostasis. But how that tension is regulated remains incompletely understood. We now report that caveolae control epithelial tension and show that this is necessary for oncogene-transfected cells to be eliminated by apical extrusion. Depletion of caveolin-1 (CAV1) increased steady-state tensile stresses in epithelial monolayers. As a result, loss of CAV1 in the epithelial cells surrounding oncogene-expressing cells prevented their apical extrusion. Epithelial tension in CAV1-depleted monolayers was increased by cortical contractility at adherens junctions. This reflected a signaling pathway, where elevated levels of phosphoinositide-4,5-bisphosphate (PtdIns(4,5)P2) recruited the formin, FMNL2, to promote F-actin bundling. Steady-state monolayer tension and oncogenic extrusion were restored to CAV1-depleted monolayers when tension was corrected by depleting FMNL2, blocking PtdIns(4,5)P2, or disabling the interaction between FMNL2 and PtdIns(4,5)P2. Thus, caveolae can regulate active mechanical tension for epithelial homeostasis by controlling lipid signaling to the actin cytoskeleton.


Asunto(s)
Caveolas/metabolismo , Células Epiteliales/metabolismo , Proteínas Oncogénicas/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Células CACO-2 , Caveolina 1/metabolismo , Células Epiteliales/ultraestructura , Forminas/metabolismo , Células HEK293 , Humanos , Masculino , Ratones , Proteínas Oncogénicas/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Estrés Mecánico
8.
Soft Matter ; 16(7): 1825-1839, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-31970382

RESUMEN

The physical cues from the extracellular environment mediates cell signaling spatially and temporally. Cells respond to physical cues from their environment in a non-monotonic fashion. Despite our understanding of the role of substrate rigidity on single cell migration, how cells respond collectively to increasing extracellular matrix stiffness is not well established. Here we patterned multicellular epithelial Madin-Darby canine kidney (MDCK) islands on polyacrylamide gels of varying stiffness and studied their expansion. Our findings show that the MDCK islands expanded faster with increasing stiffness only up to an optimum stiffness, over which the expansion plateaued. We then focused on the expansion of the front of the assemblies and the formation of leader cells. We observed cell front destabilization only above substrate stiffness of a few kPa. The extension of multicellular finger-like structures at the edges of the colonies for intermediate and high stiffnesses from 6 to 60 kPa responded to higher substrate stiffness by increasing focal adhesion areas and actin cable assembly. Additionally, the number of leader cells at the finger-like protrusions increased with stiffness in correlation with an increase of the area of these multicellular protrusions. Consequently, the force profile along the epithelial fingers in the parallel and transverse directions of migration showed an unexpected relationship leading to a global force decrease with the increase of stiffness. Taken together, our findings show that epithelial cell colonies respond to substrate stiffness but in a non-trivial manner that may be of importance to understand morphogenesis and collective cell invasion during tumour progression.


Asunto(s)
Carcinogénesis/genética , Movimiento Celular/genética , Adhesiones Focales/genética , Neoplasias/genética , Actinas/química , Actinas/genética , Animales , Perros , Células Epiteliales/metabolismo , Humanos , Células de Riñón Canino Madin Darby , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Neoplasias/patología , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...