Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38979273

RESUMEN

Mechanical strain substantially influences tissue shape and function in various contexts, from embryonic development to disease progression. Disruptions in these processes can result in congenital abnormalities and short-circuit mechanotransduction pathways. Manipulating strain in live tissues is crucial for understanding its impact on cellular and subcellular activities. Existing tools, such as optogenetic modulation of strain, are limited to small strain over limited distance and durations. Here, we introduce a high-strain stretcher system, the TissueTractor, designed for high-resolution spatiotemporal imaging of live tissues, enabling strain application varying from 0% to over 150%. This system is needed to unravel the intricate connections between mechanical forces and developmental processes. We demonstrated the stretcher with Xenopus laevis organotypic explants, human umbilical endothelial cells, and mouse neonatal cardiomyocytes to highlight the stretcher's adaptability. These demonstrations underscore the potential of this stretcher to deepen our understanding of the mechanical cues governing tissue dynamics and morphogenesis.

2.
Sci Total Environ ; 895: 165042, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37355129

RESUMEN

In dealing with water pollution and freshwater scarcity, on-site treatment and reuse of domestic wastewater has shown to be a promising solution. To increase on-site wastewater treatment and reuse, some cities, among them Bengaluru in India, have mandated the installation and use of the necessary technology in certain building types. However, even with a mandate, a successful and sustainable implementation of the technology, including reliable operation, monitoring, and maintenance, depends on the acceptance (i.e. positive valuation) of the technology and its use by the (prospective) users. Literature on technology acceptance indicates perceived costs, risks, and benefits of the respective technology as key predictors of acceptance. Therefore, the present online study assessed this relationship for on-site systems in Bengaluru. The relation was analysed separately for mandated users of on-site systems (N = 103) and current non-users (i.e. potential prospective users, should the mandate be expanded; N = 232), as the perceptions might differ between the two groups, due to the personal experience with the technology among users. The results show that for mandated users and non-users, acceptance of on-site systems is explained by perceived benefits only, namely a positive image of users, environmental benefits, and, only for non-users, also financial benefits for the city. The findings suggest that interventions aimed at promoting on-site systems should include emphasis on the benefits of on-site systems. Whenever possible, interventions should be tailored to the target group's individual cost, risk, and benefit perception.


Asunto(s)
Aguas Residuales , Purificación del Agua , Eliminación de Residuos Líquidos/métodos , Estudios Prospectivos , India
3.
Nat Struct Mol Biol ; 29(12): 1228-1238, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36482249

RESUMEN

DEAD-box ATPases are ubiquitous enzymes essential in all aspects of RNA biology. However, the limited in vitro catalytic activities described for these enzymes are at odds with their complex cellular roles, most notably in driving large-scale RNA remodeling steps during the assembly of ribonucleoproteins (RNPs). We describe cryo-EM structures of 60S ribosomal biogenesis intermediates that reveal how context-specific RNA unwinding by the DEAD-box ATPase Spb4 results in extensive, sequence-specific remodeling of rRNA secondary structure. Multiple cis and trans interactions stabilize Spb4 in a post-catalytic, high-energy intermediate that drives the organization of the three-way junction at the base of rRNA domain IV. This mechanism explains how limited strand separation by DEAD-box ATPases is leveraged to provide non-equilibrium directionality and ensure efficient and accurate RNP assembly.


Asunto(s)
ARN Helicasas DEAD-box , Proteínas de Saccharomyces cerevisiae , ARN Helicasas DEAD-box/metabolismo , Ribonucleoproteínas/química , ARN Ribosómico , ARN , Adenosina Trifosfatasas , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA