Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 263
Filtrar
1.
Nat Cell Biol ; 26(5): 797-810, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38600235

RESUMEN

Covalent DNA-protein cross-links (DPCs) are toxic DNA lesions that block replication and require repair by multiple pathways. Whether transcription blockage contributes to the toxicity of DPCs and how cells respond when RNA polymerases stall at DPCs is unknown. Here we find that DPC formation arrests transcription and induces ubiquitylation and degradation of RNA polymerase II. Using genetic screens and a method for the genome-wide mapping of DNA-protein adducts, DPC sequencing, we discover that Cockayne syndrome (CS) proteins CSB and CSA provide resistance to DPC-inducing agents by promoting DPC repair in actively transcribed genes. Consequently, CSB- or CSA-deficient cells fail to efficiently restart transcription after induction of DPCs. In contrast, nucleotide excision repair factors that act downstream of CSB and CSA at ultraviolet light-induced DNA lesions are dispensable. Our study describes a transcription-coupled DPC repair pathway and suggests that defects in this pathway may contribute to the unique neurological features of CS.


Asunto(s)
Síndrome de Cockayne , ADN Helicasas , Enzimas Reparadoras del ADN , Reparación del ADN , Proteínas de Unión a Poli-ADP-Ribosa , ARN Polimerasa II , Transcripción Genética , Ubiquitinación , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , Enzimas Reparadoras del ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Humanos , ADN Helicasas/metabolismo , ADN Helicasas/genética , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Síndrome de Cockayne/genética , Síndrome de Cockayne/metabolismo , Síndrome de Cockayne/patología , Daño del ADN , Rayos Ultravioleta , ADN/metabolismo , ADN/genética , Aductos de ADN/metabolismo , Aductos de ADN/genética , Reparación por Escisión , Factores de Transcripción , Receptores de Interleucina-17
2.
Proc Natl Acad Sci U S A ; 121(7): e2320240121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38315865

RESUMEN

DNA structure can regulate genome function. Four-stranded DNA G-quadruplex (G4) structures have been implicated in transcriptional regulation; however, previous studies have not directly addressed the role of an individual G4 within its endogenous cellular context. Using CRISPR to genetically abrogate endogenous G4 structure folding, we directly interrogate the G4 found within the upstream regulatory region of the critical human MYC oncogene. G4 loss leads to suppression of MYC transcription from the P1 promoter that is mediated by the deposition of a de novo nucleosome alongside alterations in RNA polymerase recruitment. We also show that replacement of the endogenous MYC G4 with a different G4 structure from the KRAS oncogene restores G4 folding and MYC transcription. Moreover, we demonstrate that the MYC G4 structure itself, rather than its sequence, recruits transcription factors and histone modifiers. Overall, our work establishes that G4 structures are important features of transcriptional regulation that coordinate recruitment of key chromatin proteins and the transcriptional machinery through interactions with DNA secondary structure, rather than primary sequence.


Asunto(s)
G-Cuádruplex , Proteínas Proto-Oncogénicas c-myc , Humanos , ADN/metabolismo , Regulación de la Expresión Génica , Regiones Promotoras Genéticas/genética , Factores de Transcripción/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética
3.
ACS Chem Biol ; 19(3): 736-742, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38417105

RESUMEN

Four-stranded G-quadruplexes (G4s) are DNA secondary structures that can form in the human genome. G4 structures have been detected in gene promoters and are associated with transcriptionally active chromatin and the recruitment of transcription factors and chromatin remodelers. We adopted a controlled, synthetic biology approach to understand how G4s can influence transcription. We stably integrated G4-forming sequences into the promoter of a synthetic reporter gene and inserted these into the genome of human cells. The integrated G4 sequences were shown to fold into a G4 structure within a cellular genomic context. We demonstrate that G4 structure formation within a gene promoter stimulates transcription compared to the corresponding G4-negative control promoter in a way that is not dependent on primary sequence or inherent G-richness. Systematic variation in the stability of folded G4s showed that in this system, transcriptional levels increased with higher stability of the G4 structure. By creating and manipulating a chromosomally integrated synthetic promoter, we have shown that G4 structure formation in a defined gene promoter can cause gene transcription to increase, which aligns with earlier observational correlations reported in the literature linking G4s to active transcription.


Asunto(s)
G-Cuádruplex , Humanos , ADN/genética , ADN/química , Regiones Promotoras Genéticas , Transcripción Genética , Cromatina
4.
iScience ; 26(12): 108559, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38144452

RESUMEN

The cancer-promoting lncRNA HOTAIR has multiple isoforms. Which isoform of HOTAIR accounts for its expression and functions in cancer is unknown. Unlike HOTAIR's canonical intergenic isoform NR_003716 (HOTAIR-C), the novel isoform NR_047517 (HOTAIR-N) forms an overlapping antisense transcription locus with HOXC11. We identified HOTAIR-N as the dominant isoform that regulates the gene expression programs and networks for cell proliferation, survival, and death in cancer cells. The CpG island in the HOTAIR-N promoter was marked with epigenetic markers for active transcription. We identified a G-quadruplex (G4) motif rich region in the HOTAIR-N CpG island. Our findings indicate that G4s in HOTAIR-N CpG island is critical for expression of HOTAIR-N in cancer cells. Disruption of G4 may represent a novel therapeutic approach for cancer. The transcriptomes regulated by HOTAIR-N and Bloom in cancer cells as provided herein are important resources for the exploration of lncRNA, DNA helicases, and G4 in cancer.

5.
EMBO J ; 42(18): e113190, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37492888

RESUMEN

DNA single-strand breaks (SSBs) disrupt DNA replication and induce chromosome breakage. However, whether SSBs induce chromosome breakage when present behind replication forks or ahead of replication forks is unclear. To address this question, we exploited an exquisite sensitivity of SSB repair-defective human cells lacking PARP activity or XRCC1 to the thymidine analogue 5-chloro-2'-deoxyuridine (CldU). We show that incubation with CldU in these cells results in chromosome breakage, sister chromatid exchange, and cytotoxicity by a mechanism that depends on the S phase activity of uracil DNA glycosylase (UNG). Importantly, we show that CldU incorporation in one cell cycle is cytotoxic only during the following cell cycle, when it is present in template DNA. In agreement with this, while UNG induces SSBs both in nascent strands behind replication forks and in template strands ahead of replication forks, only the latter trigger fork collapse and chromosome breakage. Finally, we show that BRCA-defective cells are hypersensitive to CldU, either alone and/or in combination with PARP inhibitor, suggesting that CldU may have clinical utility.


Asunto(s)
Antineoplásicos , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Rotura Cromosómica , Reparación del ADN , Replicación del ADN , ADN , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/metabolismo
6.
J Am Chem Soc ; 145(19): 10505-10511, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37141595

RESUMEN

Covalent epigenetic modifications contribute to the regulation of important cellular processes during development and differentiation, and changes in their genomic distribution and frequency are linked to the emergence of genetic disease states. Chemical and enzymatic methods that selectively target the orthogonal chemical functionality of epigenetic markers are central to the study of their distribution and function, and considerable research effort has been focused on the development of nondestructive sequencing approaches which preserve valuable DNA samples. Photoredox catalysis enables transformations with tunable chemoselectivity under mild, biocompatible reaction conditions. We report the reductive decarboxylation of 5-carboxycytosine via a novel iridium-based treatment, which represents the first application of visible-light photochemistry to epigenetic sequencing via direct base conversion. We propose that the reaction involves an oxidative quenching cycle beginning with single-electron reduction of the nucleobase by the photocatalyst, followed by hydrogen atom transfer from a thiol. The saturation of the C5-C6 backbone permits decarboxylation of the nonaromatic intermediate, and hydrolysis of the N4-amine constitutes a conversion from a cytosine derivative to a T-like base. This conversion demonstrates selectivity for 5-carboxycytosine over other canonical or modified nucleoside monomers, and is thereby applied to the sequencing of 5-carboxycytosine within modified oligonucleotides. The photochemistry explored in this study can also be used in conjunction with enzymatic oxidation by TET to profile 5-methylcytosine at single-base resolution. Compared to other base-conversion treatments, the rapid photochemical reaction takes place within minutes, which could provide advantages for high-throughput detection and diagnostic applications.


Asunto(s)
5-Metilcitosina , Citosina , Oxidación-Reducción , ADN/metabolismo
7.
Angew Chem Int Ed Engl ; 62(26): e202304756, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37118885

RESUMEN

The epigenetic modification 5-methylcytosine plays a vital role in development, cell specific gene expression and disease states. The selective chemical modification of the 5-methylcytosine methyl group is challenging. Currently, no such chemistry exists. Direct functionalisation of 5-methylcytosine would improve the detection and study of this epigenetic feature. We report a xanthone-photosensitised process that introduces a 4-pyridine modification at a C(sp3 )-H bond in the methyl group of 5-methylcytosine. We propose a reaction mechanism for this type of reaction based on density functional calculations and apply transition state analysis to rationalise differences in observed reaction efficiencies between cyanopyridine derivatives. The reaction is initiated by single electron oxidation of 5-methylcytosine followed by deprotonation to generate the methyl group radical. Cross coupling of the methyl radical with 4-cyanopyridine installs a 4-pyridine label at 5-methylcytosine. We demonstrate use of the pyridination reaction to enrich 5-methylcytosine-containing ribonucleic acid.


Asunto(s)
5-Metilcitosina , Electrones , 5-Metilcitosina/química , Oxidación-Reducción , Catálisis , Epigénesis Genética
8.
Nat Biotechnol ; 41(10): 1457-1464, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36747096

RESUMEN

DNA comprises molecular information stored in genetic and epigenetic bases, both of which are vital to our understanding of biology. Most DNA sequencing approaches address either genetics or epigenetics and thus capture incomplete information. Methods widely used to detect epigenetic DNA bases fail to capture common C-to-T mutations or distinguish 5-methylcytosine from 5-hydroxymethylcytosine. We present a single base-resolution sequencing methodology that sequences complete genetics and the two most common cytosine modifications in a single workflow. DNA is copied and bases are enzymatically converted. Coupled decoding of bases across the original and copy strand provides a phased digital readout. Methods are demonstrated on human genomic DNA and cell-free DNA from a blood sample of a patient with cancer. The approach is accurate, requires low DNA input and has a simple workflow and analysis pipeline. Simultaneous, phased reading of genetic and epigenetic bases provides a more complete picture of the information stored in genomes and has applications throughout biomedicine.

9.
Nat Biotechnol ; 41(9): 1265-1271, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36690761

RESUMEN

Characterizing drug-target engagement is essential to understand how small molecules influence cellular functions. Here we present Chem-map for in situ mapping of small molecules that interact with DNA or chromatin-associated proteins, utilizing small-molecule-directed transposase Tn5 tagmentation. We demonstrate Chem-map for three distinct drug-binding modalities as follows: molecules that target a chromatin protein, a DNA secondary structure or that intercalate in DNA. We map the BET bromodomain protein-binding inhibitor JQ1 and provide interaction maps for DNA G-quadruplex structure-binding molecules PDS and PhenDC3. Moreover, we determine the binding sites of the widely used anticancer drug doxorubicin in human leukemia cells; using the Chem-map of doxorubicin in cells exposed to the histone deacetylase inhibitor tucidinostat reveals the potential clinical advantages of this combination therapy. In situ mapping with Chem-map of small-molecule interactions with DNA and chromatin proteins provides insights that will enhance understanding of genome and chromatin function and therapeutic interventions.


Asunto(s)
Antineoplásicos , Cromatina , Humanos , Factores de Transcripción/metabolismo , ADN/genética , Sitios de Unión , Doxorrubicina
10.
Angew Chem Weinheim Bergstr Ger ; 135(26): e202304756, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38516645

RESUMEN

The epigenetic modification 5-methylcytosine plays a vital role in development, cell specific gene expression and disease states. The selective chemical modification of the 5-methylcytosine methyl group is challenging. Currently, no such chemistry exists. Direct functionalisation of 5-methylcytosine would improve the detection and study of this epigenetic feature. We report a xanthone-photosensitised process that introduces a 4-pyridine modification at a C(sp3)-H bond in the methyl group of 5-methylcytosine. We propose a reaction mechanism for this type of reaction based on density functional calculations and apply transition state analysis to rationalise differences in observed reaction efficiencies between cyanopyridine derivatives. The reaction is initiated by single electron oxidation of 5-methylcytosine followed by deprotonation to generate the methyl group radical. Cross coupling of the methyl radical with 4-cyanopyridine installs a 4-pyridine label at 5-methylcytosine. We demonstrate use of the pyridination reaction to enrich 5-methylcytosine-containing ribonucleic acid.

11.
J Am Chem Soc ; 144(50): 23096-23103, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36488193

RESUMEN

G-quadruplexes (G4s) are four-stranded DNA secondary structures that occur in the human genome and play key roles in transcription, replication, and genome stability. G4-specific molecular probes are of vital importance to elucidate the structure and function of G4s. The scFv antibody BG4 has been a widely used G4 probe but has various limitations, including relatively poor in vitro expression and the inability to be expressed intracellularly to interrogate G4s in live cells. To address these considerations, we describe herein the development of SG4, a camelid heavy-chain-only derived nanobody that was selected against the human Myc DNA G4 structure. SG4 exhibits low nanomolar affinity for a wide range of folded G4 structures in vitro. We employed AlphaFold combined with molecular dynamics simulations to construct a molecular model for the G4-nanobody interaction. The structural model accurately explains the role of key amino acids and Kd measurements of SG4 mutants, including arginine-to-alanine point mutations that dramatically diminish G4 binding affinity. Importantly, predicted amino acid-G4 interactions were subsequently confirmed experimentally by biophysical measurements. We demonstrate that the nanobody can be expressed intracellularly and used to image endogenous G4 structures in live cells. We also use the SG4 protein to positionally map G4s in situ and also on fixed chromatin. SG4 is a valuable, new tool for G4 detection and mapping in cells.


Asunto(s)
G-Cuádruplex , Humanos , ADN/química , Cromatina
12.
Cell Syst ; 13(9): 768-779.e4, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-36044898

RESUMEN

Biological systems have the capacity to not only build and robustly maintain complex structures but also to rapidly break up and rebuild such structures. Here, using primitive societies of Polistes wasps, we show that both robust specialization and rapid plasticity are emergent properties of multi-scale dynamics. We combine theory with experiments that, after perturbing the social structure by removing the queen, correlate time-resolved multi-omics with video recordings. We show that the queen-worker dimorphism relies on the balance between the development of a molecular queen phenotype in all insects and colony-scale inhibition of this phenotype via asymmetric interactions. This allows Polistes to be stable against intrinsic perturbations of molecular states while reacting plastically to extrinsic cues affecting the whole society. Long-term stability of the social structure is reinforced by dynamic DNA methylation. Our study provides a general principle of how both specialization and plasticity can be achieved in biological systems. A record of this paper's transparent peer review process is included in the supplemental information.


Asunto(s)
Avispas , Animales , Metilación de ADN , Fenotipo , Avispas/genética
13.
Science ; 375(6586): eaay9040, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35298272

RESUMEN

Survival improves when cancer is detected early. However, ~50% of cancers are at an advanced stage when diagnosed. Early detection of cancer or precancerous change allows early intervention to try to slow or prevent cancer development and lethality. To achieve early detection of all cancers, numerous challenges must be overcome. It is vital to better understand who is at greatest risk of developing cancer. We also need to elucidate the biology and trajectory of precancer and early cancer to identify consequential disease that requires intervention. Insights must be translated into sensitive and specific early detection technologies and be appropriately evaluated to support practical clinical implementation. Interdisciplinary collaboration is key; advances in technology and biological understanding highlight that it is time to accelerate early detection research and transform cancer survival.


Asunto(s)
Detección Precoz del Cáncer , Neoplasias/diagnóstico , Biomarcadores de Tumor , Carcinogénesis , Técnicas y Procedimientos Diagnósticos , Susceptibilidad a Enfermedades , Femenino , Humanos , Masculino , Neoplasias/patología , Neoplasias/fisiopatología , Medición de Riesgo , Sensibilidad y Especificidad
15.
J Minim Access Surg ; 18(1): 97-104, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35017399

RESUMEN

CONTEXT: : The importance of upper gastrointestinal (UGI) contrast study following sleeve gastrectomy (SG) is equivocal. It can, however, yield anatomical and functional details, the significance of which mostly remains unknown. SETTINGS AND DESIGN: : This prospective, single-center study included SG patients between January 2018 and January 2019. MATERIALS AND METHODS: : UGI contrast study was done on post-operative day 1. The findings of the study namely gastroesophageal junction (GEJ) holdup time, presence of fundus, gastroduodenal emptying (GDE) time, and sleeve shape were compared with weight loss, improvement of glycosylated hemoglobin (HbA1c) and gastroesophageal reflux disease (GERD) symptoms at 3, 6, and 12 months follow-up. RESULTS: : There were 138 patients with 100% follow-up. Radiological sleeve patterns observed were: tubular (62.3%), superior (16.0%), and inferior (21.7%) pouches. GEJ holdup time had no effect on percentage total weight loss (%TWL) (P = 0.09) or HbA1c improvement (P = 0.077). The absence of fundus led to greater %TWL at 6 months (P = 0.048). GDE time <15 s led to higher %TWL (P = 0.028) and lower HbA1c (P = 0.010) at 12 months. Antrum size <2 cm was associated with higher %TWL (P = 0.022) and lower HbA1c level (P = 0.047) at 12 months. Vomiting and regurgitation were common with tubular sleeves. CONCLUSION: UGI contrast study can predict weight loss, HbA1c improvement, and GERD symptoms. The absence of fundus, small antrum, and rapid GDE are associated with better weight loss. HbA1c improvement is better with small antrum and rapid GDE. Tubular sleeve predisposes to vomiting and regurgitation.

16.
Nat Commun ; 13(1): 142, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013231

RESUMEN

The establishment of cell identity during embryonic development involves the activation of specific gene expression programmes and is underpinned by epigenetic factors including DNA methylation and histone post-translational modifications. G-quadruplexes are four-stranded DNA secondary structures (G4s) that have been implicated in transcriptional regulation and cancer. Here, we show that G4s are key genomic structural features linked to cellular differentiation. We find that G4s are highly abundant in human embryonic stem cells and are lost during lineage specification. G4s are prevalent in enhancers and promoters. G4s that are found in common between embryonic and downstream lineages are tightly linked to transcriptional stabilisation of genes involved in essential cellular functions as well as transitions in the histone post-translational modification landscape. Furthermore, the application of small molecules that stabilise G4s causes a delay in stem cell differentiation, keeping cells in a more pluripotent-like state. Collectively, our data highlight G4s as important epigenetic features that are coupled to stem cell pluripotency and differentiation.


Asunto(s)
Linaje de la Célula/genética , Epigénesis Genética , G-Cuádruplex , Histonas/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Células Madre Pluripotentes/metabolismo , Procesamiento Proteico-Postraduccional , Biomarcadores/metabolismo , Diferenciación Celular , Línea Celular , ADN/genética , ADN/metabolismo , Metilación de ADN , Elementos de Facilitación Genéticos , Expresión Génica , Histonas/genética , Células Madre Embrionarias Humanas/citología , Humanos , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Nestina/genética , Nestina/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factor de Transcripción PAX6/genética , Factor de Transcripción PAX6/metabolismo , Células Madre Pluripotentes/citología , Regiones Promotoras Genéticas , Receptores de Factor de Crecimiento Nervioso/genética , Receptores de Factor de Crecimiento Nervioso/metabolismo , Factor de Transcripción AP-2/genética , Factor de Transcripción AP-2/metabolismo
17.
Wellcome Open Res ; 7: 282, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37475875

RESUMEN

Background: Methylation of carbon-5 of cytosines (m 5C) is a conserved post-transcriptional nucleotide modification of RNA with widespread distribution across organisms. It can be further modified to yield 5-hydroxymethylcytidine (hm 5C), 5-formylcytidine (f 5C), 2´-O-methyl-5-hydroxymethylcytidine (hm 5Cm) and 2´-O-methyl-5-formylcytidine (f 5Cm). How m 5C, and specially its derivates, contribute to biology mechanistically is poorly understood. We recently showed that m 5C is required for Caenorhabditis elegans development and fertility under heat stress. m 5C has been shown to participate in mRNA transport and maintain mRNA stability through its recognition by the reader proteins ALYREF and YBX1, respectively. Hence, identifying readers for RNA modifications can enhance our understanding in the biological roles of these modifications. Methods: To contribute to the understanding of how m 5C and its oxidative derivatives mediate their functions, we developed RNA baits bearing modified cytosines in diverse structural contexts to pulldown potential readers in C. elegans. Potential readers were identified using mass spectrometry. The interaction of two of the putative readers with m 5C was validated using immunoblotting. Results: Our mass spectrometry analyses revealed unique binding proteins for each of the modifications. In silico analysis for phenotype enrichments suggested that hm 5Cm unique readers are enriched in proteins involved in RNA processing, while readers for m 5C, hm 5C and f 5C are involved in germline processes. We validated our dataset by demonstrating that the nematode ALYREF homologues ALY-1 and ALY-2 preferentially bind m 5C in vitro. Finally, sequence alignment analysis showed that several of the putative m 5C readers contain the conserved RNA recognition motif (RRM), including ALY-1 and ALY-2. Conclusions: The dataset presented here serves as an important scientific resource that will support the discovery of new functions of m 5C and its derivatives. Furthermore, we demonstrate that ALY-1 and ALY-2 bind to m 5C in C. elegans.

18.
J Robot Surg ; 16(1): 97-105, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33609251

RESUMEN

Thoracolaparoscopic esophagectomy (TLE) for carcinoma esophagus has better short-term outcomes compared to open esophagectomy. The precise role of robot-assisted laparoscopic esophagectomy (RALE) is still evolving. Single center retrospective analysis of TLE and RALE performed for carcinoma esophagus between January 2015 and September 2018. Propensity score matching was done between the groups for age, gender, BMI, ASA grade, tumor location, neoadjuvant therapy, the extent of surgical resection (Ivor Lewis or McKeown's), histopathological type (squamous cell carcinoma or adenocarcinoma), clinical T and N stages. The primary outcome parameter was lymph node yield. Secondary outcome parameters were resection margin status, duration of surgery, blood loss, conversion to open procedure, length of hospital stay, length of ICU stay, complications, 90-day mortality and cost. There were 90 patients in TLE and 25 patients in RALE group. After propensity matching, there were 22 patients in each group. The lymph node yield was similar in both the groups (23.95 ± 8.23 vs 22.73 ± 11.63; p = 0.688). There were no conversions or positive resection margins in either group. RALE was associated with longer operating duration (513.18 ± 91.23 min vs 444.77 ± 64.91 min; p = 0.006) and higher cost ($5271.75 ± 456.46 vs $4243.01 ± 474.64; p < 0.001) than TLE. Both were comparable in terms of blood loss (138.86 ± 31.20 ml vs 133.18 ± 34.80 ml; p = 0.572), Clavien-Dindo grade IIIa and above complications (13.64% vs 9.09%; p = 0.634), hospital stay (12.18 ± 6.35 days vs 12.73 ± 7.83 days; p = 0.801), ICU stay (4.91 ± 5.22 days vs 4.77 ± 4.81 days; p = 0.929) and mortality (0 vs 4.55%; p = 0.235). RALE is comparable to TLE in terms of short-term oncological and perioperative outcomes except for longer operating duration when performed for carcinoma esophagus. RALE is costlier than TLE.


Asunto(s)
Carcinoma de Células Escamosas , Laparoscopía , Procedimientos Quirúrgicos Robotizados , Robótica , Carcinoma de Células Escamosas/cirugía , Esofagectomía/métodos , Esófago , Humanos , Laparoscopía/métodos , Tiempo de Internación , Escisión del Ganglio Linfático/métodos , Complicaciones Posoperatorias/cirugía , Estudios Retrospectivos , Procedimientos Quirúrgicos Robotizados/métodos , Resultado del Tratamiento
19.
Sci Rep ; 11(1): 23641, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34880271

RESUMEN

G-quadruplexes (G4s) are four-stranded DNA secondary structures that form in guanine-rich regions of the genome. G4s have important roles in transcription and replication and have been implicated in genome instability and cancer. Thus far most work has profiled the G4 landscape in an ensemble of cell populations, therefore it is critical to explore the structure-function relationship of G4s in individual cells to enable detailed mechanistic insights into G4 function. With standard ChIP-seq methods it has not been possible to determine if G4 formation at a given genomic locus is variable between individual cells across a population. For the first time, we demonstrate the mapping of a DNA secondary structure at single-cell resolution. We have adapted single-nuclei (sn) CUT&Tag to allow the detection of G4s in single cells of human cancer cell lines. With snG4-CUT&Tag, we can distinguish cellular identity from a mixed cell-type population solely based on G4 features within individual cells. Our methodology now enables genomic investigations on cell-to-cell variation of a DNA secondary structure that were previously not possible.


Asunto(s)
ADN/química , G-Cuádruplex , Neoplasias/genética , Conformación de Ácido Nucleico , Análisis de la Célula Individual/métodos , Línea Celular Tumoral , Humanos , Neoplasias/patología
20.
Sci Rep ; 11(1): 22735, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34815422

RESUMEN

Four-stranded G-quadruplex (G4) structures form from guanine-rich tracts, but the extent of their formation in cellular RNA and details of their role in RNA biology remain poorly defined. Herein, we first delineate the presence of endogenous RNA G4s in the human cytoplasmic transcriptome via the binding sites of G4-interacting proteins, DDX3X (previously published), DHX36 and GRSF1. We demonstrate that a sub-population of these RNA G4s are reliably detected as folded structures in cross-linked cellular lysates using the G4 structure-specific antibody BG4. The 5' UTRs of protein coding mRNAs show significant enrichment in folded RNA G4s, particularly those for ribosomal proteins. Mutational disruption of G4s in ribosomal protein UTRs alleviates translation in vitro, whereas in cells, depletion of G4-resolving helicases or treatment with G4-stabilising small molecules inhibit the translation of ribosomal protein mRNAs. Our findings point to a common mode for translational co-regulation mediated by G4 structures. The results reveal a potential avenue for therapeutic intervention in diseases with dysregulated translation, such as cancer.


Asunto(s)
Regiones no Traducidas 5' , G-Cuádruplex , ARN Mensajero/metabolismo , Proteínas Ribosómicas/metabolismo , Sitios de Unión , Humanos , Conformación de Ácido Nucleico , Unión Proteica , ARN Mensajero/genética , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...