Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Bioenerg ; 1865(4): 149501, 2024 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-39079622

RESUMEN

A mood-stabilizing anticonvulsant valproic acid (VPA) is a drug with a pleiotropic effect on cells. Here, we describe the impact of VPA on the metabolic function of human HAP1 cells. We show that VPA altered the biosynthetic pathway of cardiolipin (CL) and affected the activities of mitochondrial enzymes such as pyruvate dehydrogenase, α-ketoglutarate dehydrogenase and NADH dehydrogenase. We demonstrate that a therapeutic dose of VPA (0.6 mM) has a harmful effect on cell growth and increases the production of reactive oxygen species and superoxides. On the contrary, less concentrated VPA (0.06 mM) increased the activities of CL-dependent enzymes leading to an increased level of oxidative phosphorylation and ATP production. The effect of VPA was also tested on the Barth syndrome model, which is characterized by a reduced amount of CL and an increased level of monolyso-CL. In this model, VPA treatment slightly attenuated the mitochondrial defects by altering the activities of CL-dependent enzymes. However, the presence of CL was essential for the increase in ATP production by VPA. Our findings highlight the potential therapeutic role of VPA in normalizing mitochondrial function in BTHS and shed light on the intricate interplay between lipid metabolism and mitochondrial physiology in health and disease. SUMMARY: This study investigates the dose-dependent effect of valproate, a mood-stabilizing drug, on mitochondrial function. The therapeutic concentration reduced overall cellular metabolic activity, while a subtherapeutic concentration notably improved the function of cardiolipin-dependent proteins within mitochondria. These findings shed light on novel aspects of valproate's effect and suggest potential practical applications for its use. By elucidating the differential effects of valproate doses on mitochondrial activity, this research underscores the drug's multifaceted role in cellular metabolism and highlights avenues for further exploration in therapeutic interventions.


Asunto(s)
Adenosina Trifosfato , Cardiolipinas , Mitocondrias , Ácido Valproico , Ácido Valproico/farmacología , Ácido Valproico/administración & dosificación , Cardiolipinas/metabolismo , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Adenosina Trifosfato/metabolismo , Síndrome de Barth/metabolismo , Anticonvulsivantes/farmacología , Anticonvulsivantes/administración & dosificación , Fosforilación Oxidativa/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Línea Celular , Relación Dosis-Respuesta a Droga
2.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(7): 159523, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38866087

RESUMEN

The effectivity of utilization of exogenous sterols in the yeast Saccharomyces cerevisiae exposed to hypoxic stress is dependent on the sterol structure. The highly imported sterols include animal cholesterol or plant sitosterol, while ergosterol, typical of yeasts, is imported to a lesser extent. An elevated utilization of non-yeast sterols is associated with their high esterification and relocalization to lipid droplets (LDs). Here we present data showing that LDs and sterol esterification play a critical role in the regulation of the accumulation of non-yeast sterols in membranes. Failure to form LDs during anaerobic growth in media supplemented with cholesterol or sitosterol resulted in an extremely long lag phase, in contrast to normal growth in media with ergosterol or plant stigmasterol. Moreover, in hem1∆, which mimics anaerobiosis, neither cholesterol nor sitosterol supported the growth in an LD-less background. The incorporation of non-ergosterol sterols into the membranes affected fundamental membrane characteristics such as relative membrane potential, permeability, tolerance to osmotic stress and the formation of membrane domains. Our findings reveal that LDs assume an important role in scenarios wherein cells are dependent on the utilization of exogenous lipids, particularly under anoxia. Given the diverse lipid structures present in yeast niches, LDs fulfil a protective role, mitigating the risk of excessive accumulation of potentially toxic steroids and fatty acids in the membranes. Finally, we present a novel function for sterols in a model eukaryotic cell - alleviation of the lipotoxicity of unsaturated fatty acids.


Asunto(s)
Gotas Lipídicas , Saccharomyces cerevisiae , Esteroles , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/efectos de los fármacos , Gotas Lipídicas/metabolismo , Esteroles/metabolismo , Membrana Celular/metabolismo , Membrana Celular/efectos de los fármacos , Colesterol/metabolismo , Ergosterol/metabolismo , Anaerobiosis , Estrés Fisiológico , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Esterificación
4.
Sci Rep ; 14(1): 11497, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769106

RESUMEN

Barth syndrome (BTHS) is a rare disorder caused by mutations in the TAFAZZIN gene. Previous studies from both patients and model systems have established metabolic dysregulation as a core component of BTHS pathology. In particular, features such as lactic acidosis, pyruvate dehydrogenase (PDH) deficiency, and aberrant fatty acid and glucose oxidation have been identified. However, the lack of a mechanistic understanding of what causes these conditions in the context of BTHS remains a significant knowledge gap, and this has hindered the development of effective therapeutic strategies for treating the associated metabolic problems. In the current study, we utilized tafazzin-knockout C2C12 mouse myoblasts (TAZ-KO) and cardiac and skeletal muscle tissue from tafazzin-knockout mice to identify an upstream mechanism underlying impaired PDH activity in BTHS. This mechanism centers around robust upregulation of pyruvate dehydrogenase kinase 4 (PDK4), resulting from hyperactivation of AMP-activated protein kinase (AMPK) and subsequent transcriptional upregulation by forkhead box protein O1 (FOXO1). Upregulation of PDK4 in tafazzin-deficient cells causes direct phospho-inhibition of PDH activity accompanied by increased glucose uptake and elevated intracellular glucose concentration. Collectively, our findings provide a novel mechanistic framework whereby impaired tafazzin function ultimately results in robust PDK4 upregulation, leading to impaired PDH activity and likely linked to dysregulated metabolic substrate utilization. This mechanism may underlie previously reported findings of BTHS-associated metabolic dysregulation.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Proteína Forkhead Box O1 , Ratones Noqueados , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Animales , Ratones , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Regulación hacia Arriba , Transducción de Señal , Mioblastos/metabolismo , Línea Celular , Glucosa/metabolismo , Aciltransferasas
5.
bioRxiv ; 2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38352304

RESUMEN

Barth syndrome (BTHS) is a rare disorder caused by mutations in the TAFAZZIN gene. Previous studies from both patients and model systems have established metabolic dysregulation as a core component of BTHS pathology. In particular, features such as lactic acidosis, pyruvate dehydrogenase (PDH) deficiency, and aberrant fatty acid and glucose oxidation have been identified. However, the lack of a mechanistic understanding of what causes these conditions in the context of BTHS remains a significant knowledge gap, and this has hindered the development of effective therapeutic strategies for treating the associated metabolic problems. In the current study, we utilized tafazzin-knockout C2C12 mouse myoblasts (TAZ-KO) and cardiac and skeletal muscle tissue from tafazzin-knockout mice to identify an upstream mechanism underlying impaired PDH activity in BTHS. This mechanism centers around robust upregulation of pyruvate dehydrogenase kinase 4 (PDK4), resulting from hyperactivation of AMP-activated protein kinase (AMPK) and subsequent transcriptional upregulation by forkhead box protein O1 (FOXO1). Upregulation of PDK4 in tafazzin-deficient cells causes direct phospho-inhibition of PDH activity accompanied by increased glucose uptake and elevated intracellular glucose concentration. Collectively, our findings provide a novel mechanistic framework whereby impaired tafazzin function ultimately results in robust PDK4 upregulation, leading to impaired PDH activity and likely linked to dysregulated metabolic substrate utilization. This mechanism may underlie previously reported findings of BTHS-associated metabolic dysregulation.

6.
Microbiol Spectr ; 10(6): e0248922, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36377885

RESUMEN

The absence of Isc1, the yeast homologue of mammalian neutral sphingomyelinase type 2, leads to severe mitochondrial dysfunction. We show that the deletion of another type C phospholipase, the phosphatidylglycerol (PG)-specific phospholipase Pgc1, rescues this defect. Phosphatidylethanolamine (PE) levels and cytochrome c oxidase activity, which were reduced in isc1Δ cells, were restored to wild-type levels in the pgc1Δ isc1Δ mutant. The Pgc1 substrate PG inhibited the in vitro activities of Isc1 and the phosphatidylserine decarboxylase Psd1, an enzyme crucial for PE biosynthesis. We also identify a mechanism by which the balance between the current demand for PG and its consumption is controlled. We document that the product of PG hydrolysis, diacylglycerol, competes with the substrate of PG-phosphate synthase, Pgs1, and thereby inhibits the biosynthesis of excess PG. This feedback loop does not work in the absence of Pgc1, which catalyzes PG degradation. Finally, Pgc1 activity is partially inhibited by products of Isc1-mediated hydrolysis. The described functional interconnection of the two phospholipases contributes significantly to lipid homeostasis throughout the cellular architecture. IMPORTANCE In eukaryotic cells, mitochondria are constantly adapting to changes in the biological activity of the cell, i.e., changes in nutrient availability and environmental stresses. We propose a model in which this adaptation is mediated by lipids. Specifically, we show that mitochondrial phospholipids regulate the biosynthesis of cellular sphingolipids and vice versa. To do this, lipids move by free diffusion, which does not require energy and works under any condition. This model represents a simple way for the cell to coordinate mitochondrial structure and performance with the actual needs of overall cellular metabolism. Its simplicity makes it a universally applicable principle of cellular regulation.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Fosfolipasas de Tipo C , Mitocondrias/metabolismo , Fosfatidilgliceroles/metabolismo , Fosfolipasas/química , Fosfolipasas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fosfolipasas de Tipo C/metabolismo
7.
Membranes (Basel) ; 12(4)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35448353

RESUMEN

The pathogenic variant of the TAZ gene is directly associated with Barth syndrome. Because tafazzin in the mitochondria is responsible for cardiolipin (CL) remodeling, all molecules related to the metabolism of CL can affect or be affected by TAZ mutation. In this study, we intend to recover the distortion of the mitochondrial lipid composition, especially CL, for Barth syndrome treatment. The genetically edited TAZ knockout HAP1 cells were demonstrated to be a suitable cellular model, where CL desaturation occurred and monolyso-CL (MLCL) was accumulated. From the species analysis by mass spectrometry, phosphatidylethanolamine showed changed species content after TAZ knockout. TAZ knockout also caused genetic down-regulation of PGS gene and up-regulation of PNPLA8 gene, which may decrease the biosynthesis of CLs and increase the hydrolysis product MLCL. Supplemented phosphatidylglycerol(18:1)2 (PG(18:1)2) was successfully biosynthesized to mature symmetrical CL and drastically decrease the concentration of MLCL to recover the morphology of mitochondria and the cristae shape of inner mitochondria. Newly synthesized mature CL may induce the down-regulation of PLA2G6 and PNPLA8 genes to potentially decrease MLCL production. The excess supplemented PG was further metabolized into phosphatidylcholine and phosphatidylethanolamine.

8.
Clin Exp Rheumatol ; 40(2): 346-357, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35225219

RESUMEN

OBJECTIVES: Idiopathic inflammatory myopathies/IIM are associated with changes in muscle-specific microRNA/miR. Exercise improves muscle function and metabolism in parallel with changes in miR expression. We investigated the effects of disease and exercise on miRs in differentiated muscle cells/myotubes from IIM patients and controls. METHODS: Samples of m. vastus lateralis were obtained by needle biopsy from IIM patients before/after 6-month training and from matched sedentary healthy controls. Muscle cell cultures were established and exposed to saturated fatty acid during differentiation. MiR-133a,-133b,-206,-1 and their target genes (qPCR), fat oxidation (FOx), lipids (chromatography) and mitochondrial oxidative phosphorylation (OxPHOS) complexes (immunoblotting) were measured. Interrelations between in vitro miRs and metabolism of myotubes as well as clinical parameters and disease activity/MITAX were explored. RESULTS: Levels of miRs were higher in myotubes derived from IIM patients compared to healthy controls (up to 3.5-fold, p<0.05). Neither 6-month training (IIM patients) nor in vitro palmitate treatment modulated myomiRs in myotubes. However, miR-133a,-133b, and miR-1 correlated negatively with FOx (p<0.01), triacylglycerols (p<0.05) and OxPHOS complex-V (p<0.05) and positively with OxPHOS complex-I (p<0.05) in myotubes. MiR-133a and miR-133b in myotubes were related to disease activity and fasting glycaemia in vivo (both p<0.05). CONCLUSIONS: Upregulation of microRNAs involved in myogenesis and regeneration in muscle cells derived from IIM patients indicates activation of compensatory epigenetic mechanisms, potentially aimed to counteract disease progression. Relationships of microRNAs with in vitro metabolic profile of muscle cells as well as with clinical parameters support the role of muscle-specific microRNAs in modulating muscle metabolism and clinical state of patients.


Asunto(s)
MicroARNs , Miositis , Células Cultivadas , Ejercicio Físico/fisiología , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/fisiología , Miositis/patología
9.
J Biol Chem ; 298(1): 101462, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34864056

RESUMEN

Barth syndrome (BTHS) is an inherited mitochondrial disorder characterized by a decrease in total cardiolipin and the accumulation of its precursor monolysocardiolipin due to the loss of the transacylase enzyme tafazzin. However, the molecular basis of BTHS pathology is still not well understood. Here we characterize the double mutant pgc1Δtaz1Δ of Saccharomyces cerevisiae deficient in phosphatidylglycerol-specific phospholipase C and tafazzin as a new yeast model of BTHS. Unlike the taz1Δ mutant used to date, this model accumulates phosphatidylglycerol, thus better approximating the human BTHS cells. We demonstrate that increased phosphatidylglycerol in this strain leads to more pronounced mitochondrial respiratory defects and an increased incidence of aberrant mitochondria compared to the single taz1Δ mutant. We also show that the mitochondria of the pgc1Δtaz1Δ mutant exhibit a reduced rate of respiration due to decreased cytochrome c oxidase and ATP synthase activities. Finally, we determined that the mood-stabilizing anticonvulsant valproic acid has a positive effect on both lipid composition and mitochondrial function in these yeast BTHS models. Overall, our results show that the pgc1Δtaz1Δ mutant better mimics the cellular phenotype of BTHS patients than taz1Δ cells, both in terms of lipid composition and the degree of disruption of mitochondrial structure and function. This favors the new model for use in future studies.


Asunto(s)
Síndrome de Barth , Cardiolipinas , Fosfatidilgliceroles , Aciltransferasas/metabolismo , Síndrome de Barth/metabolismo , Cardiolipinas/genética , Cardiolipinas/metabolismo , Humanos , Fenotipo , Fosfatidilgliceroles/antagonistas & inhibidores , Fosfatidilgliceroles/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo
10.
Biomolecules ; 10(11)2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-33114062

RESUMEN

Membrane proteins are targeted not only to specific membranes in the cell architecture, but also to distinct lateral microdomains within individual membranes to properly execute their biological functions. Yeast tetraspan protein Nce102 has been shown to migrate between such microdomains within the plasma membrane in response to an acute drop in sphingolipid levels. Combining microscopy and biochemistry methods, we show that upon gradual ageing of a yeast culture, when sphingolipid demand increases, Nce102 migrates from the plasma membrane to the vacuole. Instead of being targeted for degradation it localizes to V-ATPase-poor, i.e., ergosterol-enriched, domains of the vacuolar membrane, analogous to its plasma membrane localization. We discovered that, together with its homologue Fhn1, Nce102 modulates vacuolar morphology, dynamics, and physiology. Specifically, the fusing of vacuoles, accompanying a switch of fermenting yeast culture to respiration, is retarded in the strain missing both proteins. Furthermore, the absence of either causes an enlargement of ergosterol-rich vacuolar membrane domains, while the vacuoles themselves become smaller. Our results clearly show decreased stability of the V-ATPase in the absence of either Nce102 or Fhn1, a possible result of the disruption of normal microdomain morphology of the vacuolar membrane. Therefore, the functionality of the vacuole as a whole might be compromised in these cells.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo
11.
FEMS Yeast Res ; 19(5)2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31247640

RESUMEN

The biosynthesis of yeast phosphatidylglycerol (PG) takes place in the inner mitochondrial membrane. Outside mitochondria, the abundance of PG is low. Here, we present evidence that the subcellular distribution of PG is maintained by the locally controlled enzymatic activity of the PG-specific phospholipase, Pgc1. A fluorescently labeled Pgc1 protein accumulates on the surface of lipid droplets (LD). We show, however, that LD are not only dispensable for Pgc1-mediated PG degradation, but do not even host any phospholipase activity of Pgc1. Our in vitro assays document the capability of LD-accumulated Pgc1 to degrade PG upon entry to the membranes of the endoplasmic reticulum, mitochondria and even of artificial phospholipid vesicles. Fluorescence recovery after photobleaching analysis confirms the continuous exchange of GFP-Pgc1 within the individual LD in situ, suggesting that a steady-state equilibrium exists between LD and membranes to regulate the immediate phospholipase activity of Pgc1. In this model, LD serve as a storage place and shelter Pgc1, preventing its untimely degradation, while both phospholipase activity and degradation of the enzyme occur in the membranes.


Asunto(s)
Gotas Lipídicas/química , Fosfatidilgliceroles/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Fosfolipasas de Tipo C/metabolismo , Retículo Endoplásmico/metabolismo , Homeostasis , Metabolismo de los Lípidos , Mitocondrias/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
12.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(10): 1331-1344, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29958934

RESUMEN

Cardiolipin (CL) is a unique lipid component of mitochondria in all eukaryotes. It is important for the architecture of mitochondrial membranes and for mitochondrial dynamics. CL also creates a highly specific microenvironment of mitochondrial protein machineries. CL biosynthetic pathway is, however, only partially characterized in the fission yeast Schizosaccharomyces pombe. Here we show that CL synthase is an essential protein in S. pombe. It is encoded by the ORF SPAC22A12.08c as a C terminal part of a tandem fusion protein together with a mitochondrial hydrolase of unknown function. Expression of S. pombe CL synthase is able to complement deletion of the CRD1 gene of Saccharomyces cerevisiae and, vice versa, S. cerevisiae CRD1 gene complements deletion of S. pombe SPAC22A12.08c. The proper expression of CL synthase and its partner in the tandem protein, the mitochondrial hydrolase, is regulated at the level of alternate intron splicing. The first part of the SPAC22A12.08c fusion protein could be translated from both major SPAC22A12.08c derived mRNAs, with and without intron IV. Functional CL synthase, however, is produced only from the minor SPAC22A12.08c derived mRNA that has intron IV retained. Thus, intron retention is a novel mechanism for the differential expression of two proteins that evolved as a fusion protein and are under the control of the same promoter.


Asunto(s)
Hidrolasas/genética , Proteínas de la Membrana/genética , Proteínas Recombinantes de Fusión/metabolismo , Schizosaccharomyces/crecimiento & desarrollo , Empalme Alternativo , Hidrolasas/metabolismo , Intrones , Proteínas de la Membrana/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Sistemas de Lectura Abierta , Schizosaccharomyces/enzimología , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
13.
PLoS One ; 13(3): e0193042, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29494608

RESUMEN

The zebrafish (Danio rerio) is an important and widely used vertebrate model organism for the study of human diseases which include disorders caused by dysfunctional mitochondria. Mitochondria play an essential role in both energy metabolism and apoptosis, which are mediated through a mitochondrial phospholipid cardiolipin (CL). In order to examine the cardiolipin profile in the zebrafish model, we developed a CL analysis platform by using liquid chromatography-mass spectrometry (LC-MS). Meanwhile, we tested whether chlorella diet would alter the CL profile in the larval fish, and in various organs of the adult fish. The results showed that chlorella diet increased the chain length of CL in larval fish. In the adult zebrafish, the distribution patterns of CL species were similar between the adult brain and eye tissues, and between the heart and muscles. Interestingly, monolyso-cardiolipin (MLCL) was not detected in brain and eyes but found in other examined tissues, indicating a different remodeling mechanism to maintain the CL integrity. While the adult zebrafish were fed with chlorella for four weeks, the CL distribution showed an increase of the species of saturated acyl chains in the brain and eyes, but a decrease in the other organs. Moreover, chlorella diet led to a decrease of MLCL percentage in organs except the non-MLCL-containing brain and eyes. The CL analysis in the zebrafish provides an important tool for studying the mechanism of mitochondria diseases, and may also be useful for testing medical regimens targeting against the Barth Syndrome.


Asunto(s)
Cardiolipinas/metabolismo , Dieta , Mitocondrias/metabolismo , Pez Cebra/fisiología , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Síndrome de Barth/metabolismo , Cardiolipinas/análisis , Chlorella/metabolismo , Metabolismo Energético , Femenino
14.
Mol Cell Biochem ; 435(1-2): 109-131, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28526935

RESUMEN

Diabetic encephalopathy, a proven complication of diabetes is associated with gradually developing end-organ damage in the CNS increasing the risk of stroke, cognitive dysfunction or Alzheimer's disease. This study investigated the response of rat cortical mitochondria to streptozotocin-induced diabetes and the potential for fish oil emulsion (FOE) to modulate mitochondrial function. Diabetes-induced deregulation of the respiratory chain function as a result of diminished complex I activity (CI) and cytochrome c oxidase hyperactivity was associated with attenuation of antioxidant defense of isolated cortical mitochondria, monitored by SOD activity, the thiol content, the dityrosine and protein-lipid peroxidation adduct formation. A parallel reduction in phosphorylation of the energy marker AMPK has pointed out to disrupted energy homeostasis. Dietary FOE administration partially preserved CI activity, restored AMPK phosphorylation, but was unable to attenuate oxidative stress and prevent the shift toward saturated fatty acids in the cardiolipin composition. Moreover, diabetes has induced alterations in the protein expression of the regulatory COX4 subunit of cytochrome c oxidase, in the inhibitory factor IF1 and ATP5A subunit of F0F1-ATP synthase, in the uncoupling protein UCP4 and supramolecular organization of the respiratory complexes. FOE administration to diabetic rats has partially reversed these alterations. This study suggests diabetes-induced dysfunction of brain cortical mitochondria and its modulation by FOE administration. The intricate diabetic milieu and the n-3 FA nutrigenomic strength, however require further investigations to be able to unequivocally evaluate neuroprotective and adverse effects of FOE supplementation on the diabetic brain function.


Asunto(s)
Corteza Cerebral/metabolismo , Diabetes Mellitus Experimental/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Ácidos Grasos Omega-3/farmacología , Mitocondrias/metabolismo , Animales , Corteza Cerebral/patología , Diabetes Mellitus Experimental/patología , Masculino , Mitocondrias/patología , Ratas , Ratas Wistar
15.
Eur J Cell Biol ; 96(6): 591-599, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28501103

RESUMEN

We describe a novel mechanism of mRNA decay regulation, which takes place under the conditions of glucose deprivation in the yeast Saccharomyces cerevisiae. The regulation is based on temporally stable sequestration of the main 5'-3' mRNA exoribonuclease Xrn1 at the eisosome, a plasma membrane-associated protein complex organizing a specialized membrane microdomain. As documented by monitoring the decay of a specific mRNA substrate in time, Xrn1-mediated mRNA degradation ceases during the accumulation of Xrn1 at eisosome, but the eisosome-associated Xrn1 retains its functionality and can be re-activated when released to cytoplasm following the addition of glucose. In cells lacking the eisosome organizer Pil1, Xrn1 does not associate with the plasma membrane and its activity is preserved till the stationary phase. Thus, properly assembled eisosome is necessary for this kind of Xrn1 regulation, which occurs in a liquid culture as well as in a differentiated colony.


Asunto(s)
Citoplasma/metabolismo , Exorribonucleasas/genética , Fosfoproteínas/genética , Estabilidad del ARN/genética , Proteínas de Saccharomyces cerevisiae/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Citoplasma/genética , Exorribonucleasas/metabolismo , Microdominios de Membrana/genética , Microdominios de Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Fosfoproteínas/metabolismo , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Biochim Biophys Acta ; 1857(1): 34-45, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26482708

RESUMEN

In yeast, phosphatidylglycerol (PG) is a minor phospholipid under standard conditions; it can be utilized for cardiolipin (CL) biosynthesis by CL synthase, Crd1p, or alternatively degraded by the phospholipase Pgc1p. The Saccharomyces cerevisiae deletion mutants crd1Δ and pgc1Δ both accumulate PG. Based on analyses of the phospholipid content of pgc1Δ and crd1Δ yeast, we revealed that in yeast mitochondria, two separate pools of PG are present, which differ in their fatty acid composition and accessibility for Pgc1p-catalyzed degradation. In contrast to CL-deficient crd1Δ yeast, the pgc1Δ mutant contains normal levels of CL. This makes the pgc1Δ strain a suitable model to study the effect of accumulation of PG per se. Using fluorescence microscopy, we show that accumulation of PG with normal levels of CL resulted in increased fragmentation of mitochondria, while in the absence of CL, accumulation of PG led to the formation of large mitochondrial sheets. We also show that pgc1Δ mitochondria exhibited increased respiration rates due to increased activity of cytochrome c oxidase. Taken together, our results indicate that not only a lack of anionic phospholipids, but also excess PG, or unbalanced ratios of anionic phospholipids in mitochondrial membranes, have harmful consequences on mitochondrial morphology and function.


Asunto(s)
Mitocondrias/metabolismo , Fosfatidilgliceroles/metabolismo , Saccharomyces cerevisiae/metabolismo , Cardiolipinas/biosíntesis , Complejo IV de Transporte de Electrones/metabolismo , Mitocondrias/ultraestructura , Fosfolipasas/fisiología
17.
Yeast ; 32(3): 345-54, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25483891

RESUMEN

Mdm31p is an inner mitochondrial membrane (IMM) protein with unknown function in Saccharomyces cerevisiae. Mutants lacking Mdm31p contain only a few giant spherical mitochondria with disorganized internal structure, altered phospholipid composition and disturbed ion homeostasis, accompanied by increased resistance to the electroneutral K+ /H+ ionophore nigericin. These phenotypes are interpreted as resulting from diverse roles of Mdm31p, presumably in linking mitochondrial DNA (mtDNA) to the machinery involved in segregation of mitochondria, in mediating cation transport across IMM and in phospholipid shuttling between mitochondrial membranes. To investigate which of the roles of Mdm31p are conserved in ascomycetous yeasts, we analysed the Mdm31p orthologue in Schizosaccharomyces pombe. Our results demonstrate that, similarly to its S. cerevisiae counterpart, SpMdm31 is a mitochondrial protein and its absence results in increased resistance to nigericin. However, in contrast to S. cerevisiae, Sz. pombe cells lacking SpMdm31 are also less sensitive to the electrogenic K+ ionophore valinomycin. Moreover, mitochondria of the fission yeast mdm31Δ mutant display no changes in morphology or phospholipid composition. Therefore, in terms of function, the two orthologous proteins appear to have considerably diverged between these two evolutionarily distant yeast species, possibly sharing only their participation in ion homeostasis.


Asunto(s)
Proteínas Mitocondriales/metabolismo , Fosfolípidos/metabolismo , Ionóforos de Potasio/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Transporte Biológico , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
18.
FEMS Yeast Res ; 14(2): 337-45, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24119036

RESUMEN

The fight against multidrug-resistant pathogens requires an understanding of the underlying cellular mechanisms. In this work, we isolate and characterize one of the multidrug resistance determinants in Kluyveromyces lactis, the KlPDR16 gene. We show that KlPdr16p (345 aa), which belongs to the KlPdr1p regulon, is a functional homologue of the Saccharomyces cerevisiae Pdr16p. Deletion of KlPDR16 resulted in hypersensitivity of K. lactis cells to antifungal azoles, oligomycin, rhodamine 6G, 4-nitroquinoline-N-oxide and alkali metal cations. The Klpdr16∆ mutation led to a decreased content of ergosterol in whole-cell extract. In spite of the hypersensitivity of Klpdr16∆ mutant cells to rhodamine 6G and oligomycin, the transcript level of the KlPDR5 gene and the rhodamine 6G efflux in the mutant was the same as in the parental strain. Increased accumulation of rhodamine 6G in Klpdr16∆ cells indicates that KlPDR16 limits the rate of passive drug diffusion across the membrane, without affecting the glucose-induced drug export. The results obtained show that KlPDR16, similar to its orthologues in other yeast species, influences the passive drug diffusion into the yeast cell.


Asunto(s)
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Kluyveromyces/genética , Kluyveromyces/metabolismo , Álcalis/farmacología , Antifúngicos/farmacología , Clonación Molecular , Farmacorresistencia Fúngica Múltiple/genética , Eliminación de Gen , Kluyveromyces/efectos de los fármacos , Metabolismo de los Lípidos , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA