Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 20(5): e1011652, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38768256

RESUMEN

The year 2022 was marked by the mpox outbreak caused by the human monkeypox virus (MPXV), which is approximately 98% identical to the vaccinia virus (VACV) at the sequence level with regard to the proteins involved in DNA replication. We present the production in the baculovirus-insect cell system of the VACV DNA polymerase holoenzyme, which consists of the E9 polymerase in combination with its co-factor, the A20-D4 heterodimer. This led to the 3.8 Å cryo-electron microscopy (cryo-EM) structure of the DNA-free form of the holoenzyme. The model of the holoenzyme was constructed from high-resolution structures of the components of the complex and the A20 structure predicted by AlphaFold 2. The structures do not change in the context of the holoenzyme compared to the previously determined crystal and NMR structures, but the E9 thumb domain became disordered. The E9-A20-D4 structure shows the same compact arrangement with D4 folded back on E9 as observed for the recently solved MPXV holoenzyme structures in the presence and the absence of bound DNA. A conserved interface between E9 and D4 is formed by a cluster of hydrophobic residues. Small-angle X-ray scattering data show that other, more open conformations of E9-A20-D4 without the E9-D4 contact exist in solution using the flexibility of two hinge regions in A20. Biolayer interferometry (BLI) showed that the E9-D4 interaction is indeed weak and transient in the absence of DNA although it is very important, as it has not been possible to obtain viable viruses carrying mutations of key residues within the E9-D4 interface.


Asunto(s)
Microscopía por Crioelectrón , ADN Polimerasa Dirigida por ADN , Virus Vaccinia , Virus Vaccinia/enzimología , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/química , Holoenzimas/química , Holoenzimas/metabolismo , Proteínas Virales/metabolismo , Proteínas Virales/química , Proteínas Virales/genética , Animales , Humanos , Modelos Moleculares , Conformación Proteica , Cristalografía por Rayos X
2.
Nat Commun ; 14(1): 5652, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37704606

RESUMEN

The Aurora family of kinases orchestrates chromosome segregation and cytokinesis during cell division, with precise spatiotemporal regulation of its catalytic activities by distinct protein scaffolds. Plasmodium spp., the causative agents of malaria, are unicellular eukaryotes with three unique and highly divergent aurora-related kinases (ARK1-3) that are essential for asexual cellular proliferation but lack most canonical scaffolds/activators. Here we investigate the role of ARK2 during sexual proliferation of the rodent malaria Plasmodium berghei, using a combination of super-resolution microscopy, mass spectrometry, and live-cell fluorescence imaging. We find that ARK2 is primarily located at spindle microtubules in the vicinity of kinetochores during both mitosis and meiosis. Interactomic and co-localisation studies reveal several putative ARK2-associated interactors including the microtubule-interacting protein EB1, together with MISFIT and Myosin-K, but no conserved eukaryotic scaffold proteins. Gene function studies indicate that ARK2 and EB1 are complementary in driving endomitotic division and thereby parasite transmission through the mosquito. This discovery underlines the flexibility of molecular networks to rewire and drive unconventional mechanisms of chromosome segregation in the malaria parasite.


Asunto(s)
División del Núcleo Celular , Segregación Cromosómica , Animales , Plasmodium berghei/genética , Proliferación Celular , Meiosis , Aurora Quinasas , Eucariontes
3.
Sci Adv ; 9(24): eadf2161, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37327340

RESUMEN

Critical events in the life cycle of malaria-causing parasites depend on cyclic guanosine monophosphate homeostasis by guanylyl cyclases (GCs) and phosphodiesterases, including merozoite egress or invasion of erythrocytes and gametocyte activation. These processes rely on a single GCα, but in the absence of known signaling receptors, how this pathway integrates distinct triggers is unknown. We show that temperature-dependent epistatic interactions between phosphodiesterases counterbalance GCα basal activity preventing gametocyte activation before mosquito blood feed. GCα interacts with two multipass membrane cofactors in schizonts and gametocytes: UGO (unique GC organizer) and SLF (signaling linking factor). While SLF regulates GCα basal activity, UGO is essential for GCα up-regulation in response to natural signals inducing merozoite egress and gametocyte activation. This work identifies a GC membrane receptor platform that senses signals triggering processes specific to an intracellular parasitic lifestyle, including host cell egress and invasion to ensure intraerythrocytic amplification and transmission to mosquitoes.


Asunto(s)
Culicidae , Plasmodium , Animales , Señales (Psicología) , Plasmodium/fisiología , Eritrocitos/parasitología , Merozoítos/fisiología , Estadios del Ciclo de Vida , Culicidae/parasitología
4.
bioRxiv ; 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36778504

RESUMEN

Mechanisms of cell division are remarkably diverse, suggesting the underlying molecular networks among eukaryotes differ extensively. The Aurora family of kinases orchestrates the process of chromosome segregation and cytokinesis during cell division through precise spatiotemporal regulation of their catalytic activities by distinct scaffolds. Plasmodium spp., the causative agents of malaria, are unicellular eukaryotes that have three divergent aurora-related kinases (ARKs) and lack most canonical scaffolds/activators. The parasite uses unconventional modes of chromosome segregation during endomitosis and meiosis in sexual transmission stages within mosquito host. This includes a rapid threefold genome replication from 1N to 8N with successive cycles of closed mitosis, spindle formation and chromosome segregation within eight minutes (termed male gametogony). Kinome studies had previously suggested likely essential functions for all three Plasmodium ARKs during asexual mitotic cycles; however, little is known about their location, function, or their scaffolding molecules during unconventional sexual proliferative stages. Using a combination of super-resolution microscopy, mass spectrometry, and live-cell fluorescence imaging, we set out to investigate the role of the atypical Aurora paralog ARK2 to proliferative sexual stages using rodent malaria model Plasmodium berghei . We find that ARK2 primarily localises to the spindle apparatus in the vicinity of kinetochores during both mitosis and meiosis. Interactomics and co-localisation studies reveal a unique ARK2 scaffold at the spindle including the microtubule plus end-binding protein EB1, lacking conserved Aurora scaffold proteins. Gene function studies indicate complementary functions of ARK2 and EB1 in driving endomitotic divisions and thereby parasite transmission. Our discovery of a novel Aurora kinase spindle scaffold underlines the emerging flexibility of molecular networks to rewire and drive unconventional mechanisms of chromosome segregation in the malaria parasite Plasmodium .

5.
Res Sq ; 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36798191

RESUMEN

Mechanisms of cell division are remarkably diverse, suggesting the underlying molecular networks among eukaryotes differ extensively. The Aurora family of kinases orchestrates the process of chromosome segregation and cytokinesis during cell division through precise spatiotemporal regulation of their catalytic activities by distinct scaffolds. Plasmodium spp., the causative agents of malaria, are unicellular eukaryotes that have three divergent aurora-related kinases (ARKs) and lack most canonical scaffolds/activators. The parasite uses unconventional modes of chromosome segregation during endomitosis and meiosis in sexual transmission stages within mosquito host. This includes a rapid threefold genome replication from 1N to 8N with successive cycles of closed mitosis, spindle formation and chromosome segregation within eight minutes (termed male gametogony). Kinome studies had previously suggested likely essential functions for all three Plasmodium ARKs during asexual mitotic cycles; however, little is known about their location, function, or their scaffolding molecules during unconventional sexual proliferative stages. Using a combination of super-resolution microscopy, mass spectrometry, omics and live-cell fluorescence imaging, we set out to investigate the contribution of the atypical Aurora paralog ARK2 to proliferative sexual stages using rodent malaria model Plasmodium berghei. We find that ARK2 primarily localises to the spindle apparatus associated with kinetochores during both mitosis and meiosis. Interactomics and co-localisation studies reveal a unique ARK2 scaffold at the spindle including the microtubule plus end-binding protein EB1 and lacking some other conserved molecules. Gene function studies indicate complementary functions of ARK2 and EB1 in driving endomitotic divisions and thereby parasite transmission. Our discovery of a novel Aurora spindle scaffold underlines the emerging flexibility of molecular networks to rewire and drive unconventional mechanisms of chromosome segregation in the malaria parasite Plasmodium.

7.
Sci Adv ; 7(13)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33762339

RESUMEN

Calcium signaling regulated by the cGMP-dependent protein kinase (PKG) controls key life cycle transitions in the malaria parasite. However, how calcium is mobilized from intracellular stores in the absence of canonical calcium channels in Plasmodium is unknown. Here, we identify a multipass membrane protein, ICM1, with homology to transporters and calcium channels that is tightly associated with PKG in both asexual blood stages and transmission stages. Phosphoproteomic analyses reveal multiple ICM1 phosphorylation events dependent on PKG activity. Stage-specific depletion of Plasmodium berghei ICM1 prevents gametogenesis due to a block in intracellular calcium mobilization, while conditional loss of Plasmodium falciparum ICM1 is detrimental for the parasite resulting in severely reduced calcium mobilization, defective egress, and lack of invasion. Our findings suggest that ICM1 is a key missing link in transducing PKG-dependent signals and provide previously unknown insights into atypical calcium homeostasis in malaria parasites essential for pathology and disease transmission.


Asunto(s)
Malaria , Parásitos , Animales , Calcio/metabolismo , Canales de Calcio , Gametogénesis , Malaria/parasitología , Proteínas de la Membrana/metabolismo , Plasmodium berghei/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
8.
PLoS Biol ; 19(3): e3001020, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33705377

RESUMEN

Malaria is caused by unicellular Plasmodium parasites. Plasmodium relies on diverse microtubule cytoskeletal structures for its reproduction, multiplication, and dissemination. Due to the small size of this parasite, its cytoskeleton has been primarily observable by electron microscopy (EM). Here, we demonstrate that the nanoscale cytoskeleton organisation is within reach using ultrastructure expansion microscopy (U-ExM). In developing microgametocytes, U-ExM allows monitoring the dynamic assembly of axonemes and concomitant tubulin polyglutamylation in whole cells. In the invasive merozoite and ookinete forms, U-ExM unveils the diversity across Plasmodium stages and species of the subpellicular microtubule arrays that confer cell rigidity. In ookinetes, we additionally identify an apical tubulin ring (ATR) that colocalises with markers of the conoid in related apicomplexan parasites. This tubulin-containing structure was presumed to be lost in Plasmodium despite its crucial role in motility and invasion in other apicomplexans. Here, U-ExM reveals that a divergent and considerably reduced form of the conoid is actually conserved in Plasmodium species.


Asunto(s)
Citoesqueleto/ultraestructura , Microtúbulos/ultraestructura , Toxoplasma/ultraestructura , Animales , Citoesqueleto/metabolismo , Malaria/metabolismo , Malaria/parasitología , Microscopía Electrónica/métodos , Microtúbulos/metabolismo , Parásitos , Plasmodium/metabolismo , Plasmodium/patogenicidad , Plasmodium/ultraestructura , Toxoplasma/metabolismo , Toxoplasma/patogenicidad , Tubulina (Proteína)
9.
Mol Microbiol ; 115(5): 829-838, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33112460

RESUMEN

Malaria-causing parasites are transmitted from humans to mosquitoes when developmentally arrested gametocytes are taken up by a female Anopheles during a blood meal. The changes in environment from human to mosquito activate gametogenesis, including a drop in temperature, a rise in pH, and a mosquito-derived molecule, xanthurenic acid. Signaling receptors have not been identified in malaria parasites but mounting evidence indicates that cGMP homeostasis is key to sensing extracellular cues in gametocytes. Low levels of cGMP maintained by phosphodiesterases prevent precocious activation of gametocytes in the human blood. Upon ingestion, initiation of gametogenesis depends on the activation of a hybrid guanylyl cyclase/P4-ATPase. Elevated cGMP levels lead to the rapid mobilization of intracellular calcium that relies upon the activation of both cGMP-dependent protein kinase and phosphoinositide phospholipase C. Once calcium is released, a cascade of phosphorylation events mediated by calcium-dependent protein kinases and phosphatases regulates the cellular processes required for gamete formation. cGMP signaling also triggers timely egress from the host cell at other life cycle stages of malaria parasites and in Toxoplasma gondii, a related apicomplexan parasite. This suggests that cGMP signaling is a versatile platform transducing external cues into calcium signals at important decision points in the life cycle of apicomplexan parasites.


Asunto(s)
Anopheles/parasitología , GMP Cíclico/metabolismo , Malaria/parasitología , Plasmodium/metabolismo , Animales , Anopheles/fisiología , Calcio/metabolismo , Células Germinativas/crecimiento & desarrollo , Células Germinativas/metabolismo , Humanos , Estadios del Ciclo de Vida , Malaria/transmisión , Plasmodium/genética , Plasmodium/crecimiento & desarrollo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
10.
Sci Rep ; 10(1): 11930, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32681115

RESUMEN

In malaria parasites, male gametogenesis is a proliferative stage essential for parasite transmission to the mosquito vector. It is a rapid process involving three rounds of genome replication alternating with closed endomitoses, and assembly of axonemes to produce eight flagellated motile microgametes. Studies in Plasmodium berghei have highlighted tight regulation of gametogenesis by a network of kinases. The P. berghei MAPK homologue PbMAP-2 is dispensable for asexual development but important at the induction of axoneme motility. However, in P. falciparum, causing the most severe form of human malaria, PfMAP-2 was suggested to be essential for asexual proliferation indicating distinct functions for MAP-2 in these two Plasmodium species. We here show that PfMAP-2 is dispensable for asexual growth but important for male gametogenesis in vitro. Similar to PbMAP-2, PfMAP-2 is required for initiating axonemal beating but not for prior DNA replication or axoneme formation. In addition, single and double null mutants of PfMAP-2 and the second P. falciparum MAPK homologue PfMAP-1 show no defect in asexual proliferation, sexual commitment or gametocytogenesis. Our results suggest that MAPK activity plays no major role in the biology of both asexual and sexual blood stage parasites up until the point of male gametogenesis.


Asunto(s)
Gametogénesis , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Parásitos/enzimología , Plasmodium falciparum/enzimología , Proteínas Protozoarias/metabolismo , Animales , Axonema/metabolismo , Masculino , Fenotipo , Reproducción Asexuada , Transcripción Genética
11.
Elife ; 92020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32568069

RESUMEN

Cell cycle transitions are generally triggered by variation in the activity of cyclin-dependent kinases (CDKs) bound to cyclins. Malaria-causing parasites have a life cycle with unique cell-division cycles, and a repertoire of divergent CDKs and cyclins of poorly understood function and interdependency. We show that Plasmodium berghei CDK-related kinase 5 (CRK5), is a critical regulator of atypical mitosis in the gametogony and is required for mosquito transmission. It phosphorylates canonical CDK motifs of components in the pre-replicative complex and is essential for DNA replication. During a replicative cycle, CRK5 stably interacts with a single Plasmodium-specific cyclin (SOC2), although we obtained no evidence of SOC2 cycling by transcription, translation or degradation. Our results provide evidence that during Plasmodium male gametogony, this divergent cyclin/CDK pair fills the functional space of other eukaryotic cell-cycle kinases controlling DNA replication.


Asunto(s)
Quinasa 5 Dependiente de la Ciclina/genética , Plasmodium berghei/genética , Proteínas Protozoarias/genética , Transducción de Señal , Quinasa 5 Dependiente de la Ciclina/metabolismo , Malaria/transmisión , Plasmodium berghei/crecimiento & desarrollo , Proteínas Protozoarias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...