Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Soc Nephrol ; 13(9): 2267-77, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12191971

RESUMEN

Mutations in the Aquaporin-2 gene, which encodes a renal water channel, have been shown to cause autosomal nephrogenic diabetes insipidus (NDI), a disease in which the kidney is unable to concentrate urine in response to vasopressin. Most AQP2 missense mutants in recessive NDI are retained in the endoplasmic reticulum (ER), but AQP2-T125M and AQP2-G175R were reported to be nonfunctional channels unimpaired in their routing to the plasma membrane. In five families, seven novel AQP2 gene mutations were identified and their cell-biologic basis for causing recessive NDI was analyzed. The patients in four families were homozygous for mutations, encoding AQP2-L28P, AQP2-A47V, AQP2-V71M, or AQP2-P185A. Expression in oocytes revealed that all these mutants, and also AQP2-T125M and AQP2-G175R, conferred a reduced water permeability compared with wt-AQP2, which was due to ER retardation. The patient in the fifth family had a G>A nucleotide substitution in the splice donor site of one allele that results in an out-of-frame protein. The other allele has a nucleotide deletion (c652delC) and a missense mutation (V194I). The routing and function of AQP2-V194I in oocytes was not different from wt-AQP2; it was therefore concluded that c652delC, which leads to an out-of-frame protein, is the NDI-causing mutation of the second allele. This study indicates that misfolding and ER retention is the main, and possibly only, cell-biologic basis for recessive NDI caused by missense AQP2 proteins. In addition, the reduced single channel water permeability of AQP2-A47V (40%) and AQP2-T125M (25%) might become of therapeutic value when chemical chaperones can be found that restore their routing to the plasma membrane.


Asunto(s)
Acuaporinas/genética , Acuaporinas/metabolismo , Diabetes Insípida Nefrogénica/genética , Mutación Missense , Secuencia de Aminoácidos , Animales , Acuaporina 2 , Acuaporina 6 , Acuaporinas/química , Línea Celular , Membrana Celular/metabolismo , Diabetes Insípida Nefrogénica/metabolismo , Salud de la Familia , Femenino , Genes Recesivos , Humanos , Recién Nacido , Masculino , Datos de Secuencia Molecular , Oocitos/metabolismo , Linaje , Estructura Terciaria de Proteína , Transporte de Proteínas/genética , Agua/metabolismo , Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...