Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22282921

RESUMEN

Waning immunity to vaccination represents a major challenge in vaccinology. Whether booster vaccination improves the durability of immune responses is unknown. Here we show, using a cohort of 55 adult vaccinees who received the BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna) vaccine against SARS-CoV-2, that a booster (i.e., 3rd immunization) dose at 6 - 10 months increased the half-life of serum neutralizing antibody (nAb) titers to 76 days from 56 - 66 days estimated after the primary two-dose vaccination series. A second booster dose (i.e., 4th immunization) more than a year after the primary vaccination increased the half-life further to 88 days. However, despite this modestly improved durability in nAb responses against the Wuhan strain, there was a loss in neutralization capacity against Omicron subvariants, especially the recently emerged variants, BA.2.75.2 and BQ.1.1 (35 and 50-fold drop in titers respectively, relative to the ancestral (WA.1) strain. While only 55 - 65% of participants demonstrated a detectable nAb titer against the newer variants after the booster (3rd dose), the response declined to below the detection limit in almost all individuals by 6 months. Notably, even against BA.1 and BA.5, the titers declined rapidly in a third of the vaccinees and were below the detection limit at 6 months. In contrast, booster vaccination induced antigen-specific memory B and T cells that persisted for at least 6 months. Collectively, our data show that the durability of immune responses improves following subsequent booster immunizations; however, the emergence of immune evasive variants reduces the effectiveness of booster doses in preventing infection.

2.
- IMPACC group; Al Ozonoff; Joanna Schaenman; Naresh Doni Jayavelu; Carly E. Milliren; Carolyn S. Calfee; Charles B. Cairns; Monica Kraft; Lindsey R. Baden; Albert C. Shaw; Florian Krammer; Harm Van Bakel; Denise Esserman; Shanshan Liu; Ana Fernandez Sesma; Viviana Simon; David A. Hafler; Ruth R. Montgomery; Steven H. Kleinstein; Ofer Levy; Christian Bime; Elias K. Haddad; David J. Erle; Bali Pulendran; Kari C. Nadeau; Mark M. Davis; Catherine L. Hough; William B. Messer; Nelson I. Agudelo Higuita; Jordan P. Metcalf; Mark A. Atkinson; Scott C. Brakenridge; David B. Corry; Farrah Kheradmand; Lauren I. R. Ehrlich; Esther Melamed; Grace A. McComsey; Rafick Sekaly; Joann Diray-Arce; Bjoern Peters; Alison D. Augustine; Elaine F. Reed; Kerry McEnaney; Brenda Barton; Claudia Lentucci; Mehmet Saluvan; Ana C. Chang; Annmarie Hoch; Marisa Albert; Tanzia Shaheen; Alvin Kho; Sanya Thomas; Jing Chen; Maimouna D. Murphy; Mitchell Cooney; Scott Presnell; Leying Guan; Jeremy Gygi; Shrikant Pawar; Anderson Brito; Zain Khalil; James A. Overton; Randi Vita; Kerstin Westendorf; Cole Maguire; Slim Fourati; Ramin Salehi-Rad; Aleksandra Leligdowicz; Michael Matthay; Jonathan Singer; Kirsten N. Kangelaris; Carolyn M. Hendrickson; Matthew F. Krummel; Charles R. Langelier; Prescott G. Woodruff; Debra L. Powell; James N. Kim; Brent Simmons; I.Michael Goonewardene; Cecilia M. Smith; Mark Martens; Jarrod Mosier; Hiroki Kimura; Amy Sherman; Stephen Walsh; Nicolas Issa; Charles Dela Cruz; Shelli Farhadian; Akiko Iwasaki; Albert I. Ko; Evan J. Anderson; Aneesh Mehta; Jonathan E. Sevransky; Sharon Chinthrajah; Neera Ahuja; Angela Rogers; Maja Artandi; Sarah A.R. Siegel; Zhengchun Lu; Douglas A. Drevets; Brent R. Brown; Matthew L. Anderson; Faheem W. Guirgis; Rama V. Thyagarajan; Justin Rousseau; Dennis Wylie; Johanna Busch; Saurin Gandhi; Todd A. Triplett; George Yendewa; Olivia Giddings; Tatyana Vaysman; Bernard Khor; Adeeb Rahman; Daniel Stadlbauer; Jayeeta Dutta; Hui Xie; Seunghee Kim-Schulze; Ana Silvia Gonzalez-Reiche; Adriana van de Guchte; Holden T. Maecker; Keith Farrugia; Zenab Khan; Joanna Schaenman; Elaine F. Reed; Ramin Salehi-Rad; David Elashoff; Jenny Brook; Estefania Ramires-Sanchez; Megan Llamas; Adreanne Rivera; Claudia Perdomo; Dawn C. Ward; Clara E. Magyar; Jennifer Fulcher; Yumiko Abe-Jones; Saurabh Asthana; Alexander Beagle; Sharvari Bhide; Sidney A. Carrillo; Suzanna Chak; Rajani Ghale; Ana Gonzales; Alejandra Jauregui; Norman Jones; Tasha Lea; Deanna Lee; Raphael Lota; Jeff Milush; Viet Nguyen; Logan Pierce; Priya Prasad; Arjun Rao; Bushra Samad; Cole Shaw; Austin Sigman; Pratik Sinha; Alyssa Ward; Andrew - Willmore; Jenny Zhan; Sadeed Rashid; Nicklaus Rodriguez; Kevin Tang; Luz Torres Altamirano; Legna Betancourt; Cindy Curiel; Nicole Sutter; Maria Tercero Paz; Gayelan Tietje-Ulrich; Carolyn Leroux; Jennifer Connors; Mariana Bernui; Michele Kutzler; Carolyn Edwards; Edward Lee; Edward Lin; Brett Croen; Nicholas Semenza; Brandon Rogowski; Nataliya Melnyk; Kyra Woloszczuk; Gina Cusimano; Matthew Bell; Sara Furukawa; Renee McLin; Pamela Marrero; Julie Sheidy; George P. Tegos; Crystal Nagle; Nathan Mege; Kristen Ulring; Vicki Seyfert-Margolis; Michelle Conway; Dave Francisco; Allyson Molzahn; Heidi Erickson; Connie Cathleen Wilson; Ron Schunk; Trina Hughes; Bianca Sierra; Kinga K. Smolen; Michael Desjardins; Simon van Haren; Xhoi Mitre; Jessica Cauley; Xiofang Li; Alexandra Tong; Bethany Evans; Christina Montesano; Jose Humberto Licona; Jonathan Krauss; Jun Bai Park Chang; Natalie Izaguirre; Omkar Chaudhary; Andreas Coppi; John Fournier; Subhasis Mohanty; M. Catherine Muenker; Allison Nelson; Khadir Raddassi; Michael Rainone; William Ruff; Syim Salahuddin; Wade L. Schulz; Pavithra Vijayakumar; Haowei Wang; Elsio Wunder Jr.; H. Patrick Young; Yujiao Zhao; Miti Saksena; Deena Altman; Erna Kojic; Komal Srivastava; Lily Q. Eaker; Maria Carolina Bermudez; Katherine F. Beach; Levy A. Sominsky; Arman Azad; Juan Manuel Carreno; Gagandeep Singh; Ariel Raskin; Johnstone Tcheou; Dominika Bielak; Hisaaki Kawabata; Lubbertus CF Mulder; Giulio Kleiner; Laurel Bristow; Laila Hussaini; Kieffer Hellmeister; Hady Samaha; Andrew Cheng; Christine Spainhour; Erin M. Scherer; Brandi Johnson; Amer Bechnak; Caroline R. Ciric; Lauren Hewitt; Bernadine Panganiban; Chistopher Huerta; Jacob Usher; Erin Carter; Nina Mcnair; Susan Pereira Ribeiro; Alexandra S. Lee; Evan Do; Andrea Fernandes; Monali Manohar; Thomas Hagan; Catherine Blish; Hena Naz Din; Jonasel Roque; Samuel S. Yang; Amanda E. Brunton; Peter E. Sullivan; Matthew Strnad; Zoe L. Lyski; Felicity J. Coulter; John L. Booth; Lauren A. Sinko; Lyle Moldawer; Brittany Borrensen; Brittney Roth-Manning; Li-Zhen Song; Ebony Nelson; Megan Lewis-Smith; Jacob Smith; Pablo Guaman Tipan; Nadia Siles; Sam Bazzi; Janelle Geltman; Kerin Hurley; Giovanni Gabriele; Scott Sieg; Matthew C. Altman; Patrice M. Becker; Nadine Rouphael.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22273396

RESUMEN

BackgroundBetter understanding of the association between characteristics of patients hospitalized with coronavirus disease 2019 (COVID-19) and outcome is needed to further improve upon patient management. MethodsImmunophenotyping Assessment in a COVID-19 Cohort (IMPACC) is a prospective, observational study of 1,164 patients from 20 hospitals across the United States. Disease severity was assessed using a 7-point ordinal scale based on degree of respiratory illness. Patients were prospectively surveyed for 1 year after discharge for post-acute sequalae of COVID-19 (PASC) through quarterly surveys. Demographics, comorbidities, radiographic findings, clinical laboratory values, SARS-CoV-2 PCR and serology were captured over a 28-day period. Multivariable logistic regression was performed. FindingsThe median age was 59 years (interquartile range [IQR] 20); 711 (61%) were men; overall mortality was 14%, and 228 (20%) required invasive mechanical ventilation. Unsupervised clustering of ordinal score over time revealed distinct disease course trajectories. Risk factors associated with prolonged hospitalization or death by day 28 included age [≥] 65 years (odds ratio [OR], 2.01; 95% CI 1.28-3.17), Hispanic ethnicity (OR, 1.71; 95% CI 1.13-2.57), elevated baseline creatinine (OR 2.80; 95% CI 1.63-4.80) or troponin (OR 1.89; 95% 1.03-3.47), baseline lymphopenia (OR 2.19; 95% CI 1.61-2.97), presence of infiltrate by chest imaging (OR 3.16; 95% CI 1.96-5.10), and high SARS-CoV2 viral load (OR 1.53; 95% CI 1.17-2.00). Fatal cases had the lowest ratio of SARS-CoV-2 antibody to viral load levels compared to other trajectories over time (p=0.001). 589 survivors (51%) completed at least one survey at follow-up with 305 (52%) having at least one symptom consistent with PASC, most commonly dyspnea (56% among symptomatic patients). Female sex was the only associated risk factor for PASC. InterpretationIntegration of PCR cycle threshold, and antibody values with demographics, comorbidities, and laboratory/radiographic findings identified risk factors for 28-day outcome severity, though only female sex was associated with PASC. Longitudinal clinical phenotyping offers important insights, and provides a framework for immunophenotyping for acute and long COVID-19. FundingNIH RESEARCH IN CONTEXTO_ST_ABSEvidence before this studyC_ST_ABSWe did a systematic search of the PubMed database from January 1st, 2020 until April 24th, 2022 using the search terms: "hospitalized" AND "SARS-CoV-2" OR "COVID-19" AND "Pro-spective" AND "Antibody" OR "PCR" OR "long term follow up" and applying the following filters: "Multicenter Study" AND "Observational Study". No language restrictions were applied. While clinical, laboratory, and radiographic features associated with severe COVID-19 in hospitalized adults have been described, description of the kinetics of SARS-CoV-2 specific assays available to clinicians (e.g. PCR and binding antibody) and their integration with other variables is scarce for both short and long term follow up. The current literature is comprised of several studies with small sample size, cross-sectional design with laboratory data typically only recorded at a single point in time (e.g., on admission), limited clinical characteristics, variable duration of follow up, single-center setting, retrospective analyses, kinetics of either PCR or antibody testing but not both, and outcomes such as death or, mechanical ventilation that do not allow delineation of variations in clinical course. Added value of this studyIn our large longitudinal multicenter cohort, the description of outcome severity, was not limited to survival versus death, but encompassed a clinical trajectory approach leveraging longitudinal data based on time in hospital, disease severity by ordinal scale based on degree of respiratory illness, and presence or absence of limitations at discharge. Fatal COVID-19 cases had the lowest ratio of antibody to viral load levels over time as compared to non-fatal cases. Integration of PCR cycle threshold and antibody values with demographics, baseline comorbidities, and laboratory/radiographic findings identified additional risk factors for outcome severity over the first 28 days. However, female sex was the only variable associated with persistence of symptoms over time. Persistence of symptoms was not associated with clinical trajectory over the first 28 days, nor with antibody/viral loads from the acute phase. Implications of all the available evidenceThe described calculated ratio (binding IgG/PCR Ct value) is unique compared to other studies, reflecting host pathogen interactions and representing an accessible approach for patient risk stratification. Integration of SARS-CoV-2 viral load and binding antibody kinetics with other laboratory as well as clinical characteristics in hospitalized COVID-19 patients can identify patients likely to have the most severe short-term outcomes, but is not predictive of symptom persistence at one year post-discharge.

3.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-484950

RESUMEN

Despite the remarkable efficacy of COVID-19 vaccines, waning immunity, and the emergence of SARS-CoV-2 variants such as Omicron represents a major global health challenge. Here we present data from a study in non-human primates demonstrating durable protection against the Omicron BA.1 variant induced by a subunit SARS-CoV-2 vaccine, consisting of RBD (receptor binding domain) on the I53-50 nanoparticle, adjuvanted with AS03, currently in Phase 3 clinical trial (NCT05007951). Vaccination induced robust neutralizing antibody (nAb) titers that were maintained at high levels for at least one year after two doses (Pseudovirus nAb GMT: 2207, Live-virus nAb GMT: 1964) against the ancestral strain, but not against Omicron. However, a booster dose at 6-12 months with RBD-Wu or RBD-{beta} (RBD from the Beta variant) displayed on I53-50 elicited equivalent and remarkably high neutralizing titers against the ancestral as well as the Omicron variant. Furthermore, there were substantial and persistent memory T and B cell responses reactive to Beta and Omicron variants. Importantly, vaccination resulted in protection against Omicron infection in the lung (no detectable virus in any animal) and profound suppression of viral burden in the nares (median peak viral load of 7567 as opposed to 1.3x107 copies in unvaccinated animals) at 6 weeks post final booster. Even at 6 months post vaccination, there was significant protection in the lung (with 7 out of 11 animals showing no viral load, 3 out of 11 animals showing ~20-fold lower viral load than unvaccinated controls) and rapid control of virus in the nares. These results highlight the durable cross-protective immunity elicited by the AS03-adjuvanted RBD-I53-50 nanoparticle vaccine platform.

4.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-479468

RESUMEN

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019 has led to the development of a large number of vaccines, several of which are now approved for use in humans. Understanding vaccine-elicited antibody responses against emerging SARS-CoV-2 variants of concern (VOC) in real time is key to inform public health policies. Serum neutralizing antibody titers are the current best correlate of protection from SARS-CoV-2 challenge in non-human primates and a key metric to understand immune evasion of VOC. We report that vaccinated BALB/c mice do not recapitulate faithfully the breadth and potency of neutralizing antibody responses against VOC, as compared to non-human primates or humans, suggesting caution should be exercised when interpreting data for this animal model.

5.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21268540

RESUMEN

Multiple SARS-CoV-2 variants that possess mutations associated with increased transmission and antibody escape have arisen over the course of the current pandemic. While the current vaccines have largely been effective against past variants, the number of mutations found on the Omicron (B.1.529) spike appear to diminish the efficacy of pre-existing immunity. Using pseudoparticles expressing the spike of several SARS-CoV-2 variants, we evaluated the magnitude and breadth of the neutralizing antibody response over time in naturally infected and in mRNA-vaccinated individuals. We observed that while boosting increases the magnitude of the antibody response to wildtype (D614), Beta, Delta and Omicron variants, the Omicron variant was the most resistant to neutralization. We further observed that vaccinated healthy adults had robust and broad antibody responses while responses were relatively reduced in vaccinated pregnant women, underscoring the importance of learning how to maximize mRNA vaccine responses in pregnant populations. Findings from this study show substantial heterogeneity in the magnitude and breadth of responses after infection and mRNA vaccination and may support the addition of more conserved viral antigens to existing SARS-CoV-2 vaccines. One Sentence SummaryDiminished efficacy of pre-existing immunity to highly mutated SARS-CoV-2 variants.

6.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-462488

RESUMEN

The development of the highly efficacious mRNA vaccines in less than a year since the emergence of SARS-CoV-2 represents a landmark in vaccinology. However, reports of waning vaccine efficacy, coupled with the emergence of variants of concern that are resistant to antibody neutralization, have raised concerns about the potential lack of durability of immunity to vaccination. We recently reported findings from a comprehensive analysis of innate and adaptive immune responses in 56 healthy volunteers who received two doses of the BNT162b2 vaccination. Here, we analyzed antibody responses to the homologous Wu strain as well as several variants of concern, including the emerging Mu (B.1.621) variant, and T cell responses in a subset of these volunteers at six months (day 210 post-primary vaccination) after the second dose. Our data demonstrate a substantial waning of antibody responses and T cell immunity to SARS-CoV-2 and its variants, at 6 months following the second immunization with the BNT162b2 vaccine. Notably, a significant proportion of vaccinees have neutralizing titers below the detection limit, and suggest a 3rd booster immunization might be warranted to enhance the antibody titers and T cell responses.

7.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21262687

RESUMEN

The great majority of SARS-CoV-2 infections are mild and uncomplicated, but some individuals with initially mild COVID-19 progressively develop more severe symptoms. Furthermore, mild to moderate infections are an important contributor to ongoing transmission. There remains a critical need to identify host immune biomarkers predictive of clinical and virologic outcomes in SARS-CoV-2-infected patients. Leveraging longitudinal samples and data from a clinical trial of Peginterferon Lambda for treatment of SARS-CoV-2 infected outpatients, we used host proteomics and transcriptomics to characterize the trajectory of the immune response in COVID-19 patients within the first 2 weeks of symptom onset. We define early immune signatures, including plasma levels of RIG-I and the CCR2 ligands (MCP1, MCP2 and MCP3), associated with control of oropharyngeal viral load, the degree of symptom severity, and immune memory (including SARS-CoV-2-specific T cell responses and spike (S) protein-binding IgG levels). We found that individuals receiving BNT162b2 (Pfizer-BioNTech) vaccine had similar early immune trajectories to those observed in this natural infection cohort, including the induction of both inflammatory cytokines (e.g. MCP1) and negative immune regulators (e.g. TWEAK). Finally, we demonstrate that machine learning models using 8-10 plasma protein markers measured early within the course of infection are able to accurately predict symptom severity, T cell memory, and the antibody response post-infection.

8.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-444262

RESUMEN

Although antivirals are important tools to control the SARS-CoV-2 infection, effective vaccines are essential to control the current pandemic. Plant-derived virus-like particle (VLP) vaccine candidates have previously demonstrated immunogenicity and efficacy against influenza. Here we report the immunogenicity and protection induced in macaques by intramuscular injections of VLP bearing SARS-CoV-2 spike protein (CoVLP) vaccine candidate formulated with or without Adjuvant System 03 (AS03) or cytosine phosphoguanine (CpG) 1018. Although a single dose of unadjuvanted CoVLP vaccine candidate stimulated humoral and cell-mediated immune responses, booster immunization (at 28 days after prime) and adjuvants significantly improved both responses with a higher immunogenicity and protection provided by AS03 adjuvanted CoVLP. Fifteen microgram CoVLP adjuvanted with AS03 induced a balanced IL-2 driven response along with IL-4 expression in CD4 T cells and mobilization of CD4 follicular helper cells (Tfh). Animals were challenged by multiple routes (i.e. intratracheal, intranasal and ocular) with a total viral dose of 106 plaque forming units of SARS-CoV-2. Lower viral replication in nasal swabs and broncho-alveolar lavage (BAL) as well as fewer SARS-CoV-2 infected cells and immune cell infiltrates in the lungs concomitant with reduced levels of pro-inflammatory cytokines and chemotactic factors in BAL were observed in the animals immunized with CoVLP adjuvanted with AS03. No clinical, pathologic or virologic evidences of vaccine associated enhanced disease (VAED) were observed in vaccinated animals. CoVLP adjuvanted with AS03 was therefore selected for vaccine development and clinical trials.

9.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-437792

RESUMEN

The development of effective vaccines that can be rapidly manufactured and distributed worldwide is necessary to mitigate the devastating health and economic impacts of pandemics like COVID-19. The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein, which mediates host cell entry of the virus, is an appealing antigen for subunit vaccines because it is efficient to manufacture, highly stable, and a target for neutralizing antibodies. Unfortunately, RBD is poorly immunogenic. While most subunit vaccines are commonly formulated with adjuvants to enhance their immunogenicity, we found that clinically-relevant adjuvants Alum, AddaVax, and CpG/Alum were unable to elicit neutralizing responses following a prime-boost immunization. Here we show that sustained delivery of an RBD subunit vaccine comprising CpG/Alum adjuvant in an injectable polymer-nanoparticle (PNP) hydrogel elicited potent anti-RBD and anti-spike antibody titers, providing broader protection against SARS-CoV-2 variants of concern compared to bolus administration of the same vaccine and vaccines comprising other clinically-relevant adjuvant systems. Notably, a SARS-CoV-2 spike-pseudotyped lentivirus neutralization assay revealed that hydrogel-based vaccines elicited potent neutralizing responses when bolus vaccines did not. Together, these results suggest that slow delivery of RBD subunit vaccines with PNP hydrogels can significantly enhance the immunogenicity of RBD and induce neutralizing humoral immunity.

10.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21254952

RESUMEN

During the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, new vaccine strategies including lipid nanoparticle delivery of antigen encoding RNA have been deployed globally. The BioNTech/Pfizer mRNA vaccine BNT162b2 encoding SARS-CoV-2 spike protein shows 95% efficacy in preventing disease, but it is unclear how the antibody responses to vaccination differ from those generated by infection. Here we compare the magnitude and breadth of antibodies targeting SARS-CoV-2, SARS-CoV-2 variants of concern, and endemic coronaviruses, in vaccinees and infected patients. We find that vaccination differs from infection in the dominance of IgG over IgM and IgA responses, with IgG reaching levels similar to those of severely ill COVID-19 patients and shows decreased breadth of the antibody response targeting endemic coronaviruses. Viral variants of concern from B.1.1.7 to P.1 to B.1.351 form a remarkably consistent hierarchy of progressively decreasing antibody recognition by both vaccinees and infected patients exposed to Wuhan-Hu-1 antigens.

11.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-435528

RESUMEN

Understanding the ability of SARS-CoV-2 vaccine-elicited antibodies to neutralize and protect against emerging variants of concern and other sarbecoviruses is key for guiding vaccine development decisions and public health policies. We show that a clinical stage multivalent SARS-CoV-2 receptor-binding domain nanoparticle vaccine (SARS-CoV-2 RBD-NP) protects mice from SARS-CoV-2-induced disease after a single shot, indicating that the vaccine could allow dose-sparing. SARS-CoV-2 RBD-NP elicits high antibody titers in two non-human primate (NHP) models against multiple distinct RBD antigenic sites known to be recognized by neutralizing antibodies. We benchmarked NHP serum neutralizing activity elicited by RBD-NP against a lead prefusion-stabilized SARS-CoV-2 spike immunogen using a panel of single-residue spike mutants detected in clinical isolates as well as the B.1.1.7 and B.1.351 variants of concern. Polyclonal antibodies elicited by both vaccines are resilient to most RBD mutations tested, but the E484K substitution has similar negative consequences for neutralization, and exhibit modest but comparable neutralization breadth against distantly related sarbecoviruses. We demonstrate that mosaic and cocktail sarbecovirus RBD-NPs elicit broad sarbecovirus neutralizing activity, including against the SARS-CoV-2 B.1.351 variant, and protect mice against severe SARS-CoV challenge even in the absence of the SARS-CoV RBD in the vaccine. This study provides proof of principle that sarbecovirus RBD-NPs induce heterotypic protection and enables advancement of broadly protective sarbecovirus vaccines to the clinic.

12.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-430696

RESUMEN

The development of a portfolio of SARS-CoV-2 vaccines to vaccinate the global population remains an urgent public health imperative. Here, we demonstrate the capacity of a subunit vaccine under clinical development, comprising the SARS-CoV-2 Spike protein receptor binding domain displayed on a two-component protein nanoparticle (RBD-NP), to stimulate robust and durable neutralizing antibody (nAb) responses and protection against SARS-CoV-2 in non-human primates. We evaluated five different adjuvants combined with RBD-NP including Essai O/W 1849101, a squalene-in-water emulsion; AS03, an alpha-tocopherol-containing squalene-based oil-in-water emulsion used in pandemic influenza vaccines; AS37, a TLR-7 agonist adsorbed to Alum; CpG 1018-Alum (CpG-Alum), a TLR-9 agonist formulated in Alum; or Alum, the most widely used adjuvant. All five adjuvants induced substantial nAb and CD4 T cell responses after two consecutive immunizations. Durable nAb responses were evaluated for RBD-NP/AS03 immunization and the live-virus nAb response was durably maintained up to 154 days post-vaccination. AS03, CpG-Alum, AS37 and Alum groups conferred significant protection against SARS-CoV-2 infection in the pharynges, nares and in the bronchoalveolar lavage. The nAb titers were highly correlated with protection against infection. Furthermore, RBD-NP when used in conjunction with AS03 was as potent as the prefusion stabilized Spike immunogen, HexaPro. Taken together, these data highlight the efficacy of the RBD-NP formulated with clinically relevant adjuvants in promoting robust immunity against SARS-CoV-2 in non-human primates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...