Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
iScience ; 27(5): 109689, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38706840

RESUMEN

The distinct folding accompanied by its polymorphic character renders DNA G-quadruplexes promising biomolecular building blocks to construct novel DNA-based and supramolecular assemblies. However, the highly polar nature of DNA limits the use of G-quadruplexes to water as a solvent. In addition, the archetypical G-quadruplex fold needs to be stabilized by metal-cations, which is usually a potassium ion. Here, we show that a noncovalent PEGylation process enabled by electrostatic interactions allows the first metal-free G-quadruplexes in organic solvents. Strikingly, incorporation of an iron-containing porphyrin renders the self-assembled metal-free G-quadruplex catalytically active in organic solvents. Hence, these "supraG4zymes" enable DNA-based catalysis in organic media. The results will allow the broad utilization of DNA G-quadruplexes in nonaqueous environments.

2.
Chem Sci ; 10(43): 10097-10105, 2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-32055364

RESUMEN

Chemically modified nucleic acids have long served as a very important class of bio-hybrid structures. In particular, the modification with PEG has advanced the scope and performance of oligonucleotides in materials science, catalysis and therapeutics. Most of the applications involving pristine or modified DNA rely on the potential of DNA to form a double-stranded structure. However, a substantial requirement for metal-cations to achieve hybridization has restricted the range of applications. To extend the applicability of DNA in salt-free or low ionic strength aqueous medium, we introduce noncovalent DNA-PEG constructs that allow canonical base-pairing between individually PEGylated complementary strands resulting in a double-stranded structure in salt-free aqueous medium. This method relies on grafting of amino-terminated PEG polymers electrostatically onto the backbone of DNA, which results in the formation of a PEG-envelope. The specific charge interaction of PEG molecules with DNA, absolute absence of metal ions within the PEGylated DNA molecules and formation of a double helix that is significantly more stable than the duplex in an ionic buffer have been unequivocally demonstrated using multiple independent characterization techniques.

3.
Chem Commun (Camb) ; 53(47): 6331-6334, 2017 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-28548153

RESUMEN

The speed-up of covalent bond formation was achieved between a sulfhydryl group and a 2-bromopropionic acid derivative by utilizing sliding peptide-modified substrates. Moreover, a new type of DNA cleaving reagent was developed, consisting of pVIc covalently coupled to verteporfin. This peptide-porphyrin conjugate allowed targeting of DNA and resulted in increased photodegradation of double-stranded nucleic acids.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA