Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale Res Lett ; 9(1): 84, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24548551

RESUMEN

Photocurrent oscillations, observed at low temperatures in lattice-matched Ga1-xInxNyAs1-y/GaAs multiple quantum well (MQW) p-i-n samples, are investigated as a function of applied bias and excitation wavelength and are modelled with the aid of semiconductor simulation software. The oscillations appear only at low temperatures and have the highest amplitude when the optical excitation energy is in resonance with the GaInNAs bandgap. They are explained in terms of electron accumulation and the formation of high-field domains in the GaInNAs QWs as a result of the disparity between the photoexcited electron and hole escape rates from the QWs. The application of the external bias results in the motion of the high-field domain towards the anode where the excess charge dissipates from the well adjacent to anode via tunnelling.

2.
Nanoscale Res Lett ; 9(1): 21, 2014 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-24417767

RESUMEN

We used a semi-classical model to describe carrier capture into and thermionic escape from GaInNAs/GaAs multiple quantum wells (MQWs) situated within the intrinsic region of a GaAs p-i-n junction. The results are used to explain photocurrent oscillations with applied bias observed in these structures, in terms of charge accumulation and resonance tunnelling.

3.
Nanoscale Res Lett ; 9(1): 22, 2014 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-24417791

RESUMEN

We report the observation of room-temperature optical gain at 1.3 µm in electrically driven dilute nitride vertical cavity semiconductor optical amplifiers. The gain is calculated with respect to injected power for samples with and without a confinement aperture. At lower injected powers, a gain of almost 10 dB is observed in both samples. At injection powers over 5 nW, the gain is observed to decrease. For nearly all investigated power levels, the sample with confinement aperture gives slightly higher gain.

4.
Nanoscale Res Lett ; 9(1): 37, 2014 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-24438583

RESUMEN

The Top-Hat hot electron light emission and lasing in semiconductor heterostructure (HELLISH)-vertical-cavity semiconductor optical amplifier (THH-VCSOA) is a bidirectional light-emitting and light-absorbing heterojunction device.The device contains 11 Ga0.35In0.65 N0.02As0.08/GaAs MQWs in its intrinsic active region which is enclosed between six pairs of AlAs/GaAs top distributed Bragg reflectors (DBRs) and 20.5 pairs of AlAs/GaAs bottom DBR mirrors. The THH-VCSOA is fabricated using a four-contact configuration. The wavelength conversion with amplification is achieved by the appropriate biasing of the absorption and emission regions within the device. Absorption and emission regions may be reversed by changing the polarity of the applied voltage. Emission wavelength is about 1,300 nm and a maximum gain at this wavelength is around 5 dB at T = 300 K.

5.
Nanoscale Res Lett ; 7(1): 647, 2012 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-23176644

RESUMEN

A detailed study of high-field transient and direct-current (DC) transport in GaN-based Gunn diode oscillators is carried out using the commercial simulator Sentaurus Device. Applicability of drift-diffusion (DD) and hydrodynamic (HD) models to high-speed, high-frequency devices is discussed in depth, and the results of the simulations from these models are compared. It is shown, for a highly homogeneous device based on a short (2 µm) supercritically doped (1017 cm-3) GaN specimen, that the DD model is unable to correctly take into account some essential physical effects which determine the operation mode of the device. At the same time, the HD model is ideally suited to solve such problems due to its ability to incorporate non-local effects. We show that the velocity overshoot near the device contacts and space charge injection and extraction play a crucial role in defining the operation mode of highly homogeneous short diodes in both the transient regime and the voltage-controlled oscillation regime. The transient conduction current responses are fundamentally different in the DD and HD models. The DD current simply repeats the velocity-field (v-F) characteristics, and the sample remains in a completely homogeneous state. In the HD model, the transient current pulse with a full width at half maximum of approximately 0.2 ps is increased about twofold due to the carrier injection (extraction) into (from) the active region and the velocity overshoot. The electron gas is characterized by highly inhomogeneous distributions of the carrier density, the electric field and the electron temperature. The simulation of the DC steady states of the diodes also shows very different results for the two models. The HD model shows the trapped stable anodic domain in the device, while the DD model completely retains all features of the v-F characteristics in a homogeneous gas. Simulation of the voltage-controlled oscillator shows that it operates in the accumulation layer mode generating microwave signals at 0.3 to 0.7 THz. In spite of the fact that the known criterion of a Gunn domain mode n0L > (n0L)0 was satisfied, no Gunn domains were observed. The explanation of this phenomenon is given.

6.
Nanoscale Res Lett ; 7(1): 631, 2012 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-23167964

RESUMEN

We demonstrate for the first time the operation of GaInNAs and GaAs n-i-p-i doping solar cells with ion-implanted selective contacts. Multiple layers of alternate doping are grown by molecular beam epitaxy to form the n-i-p-i structure. After growth, vertical selective contacts are fabricated by Mg and Si ion implantation, followed by rapid thermal annealing treatment and fabrication into circular mesa cells. As means of characterisation, spectral response and illuminated current-voltage (I-V) were measured on the samples. The spectral response suggests that all horizontal layers are able to contribute to the photocurrent. Performance of the devices is discussed with interest in the n-i-p-i structure as a possible design for the GaInP/GaAs/GaInNAs tandem solar cell.

7.
Nanoscale Res Lett ; 7(1): 539, 2012 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-23021540

RESUMEN

The low temperature photoluminescence under bias (PLb) and the photoconductivity (PC) of a p-i-n GaInNAs/GaAs multiple quantum well sample have been investigated. Under optical excitation with photons of energy greater than the GaAs bandgap, PC and PLb results show a number of step-like increases when the sample is reverse biased. The nature of these steps, which depends upon the temperature, exciting wavelength and intensity and the number of quantum wells (QWs) in the device, is explained in terms of thermionic emission and negative charge accumulation due to the low confinement of holes in GaInNAs QWs. At high temperature, thermal escape from the wells becomes much more dominant and the steps smear out.

8.
Nanoscale Res Lett ; 7(1): 574, 2012 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-23075073

RESUMEN

We report on the Mg-doped, indium-rich GaxIn1-xN (x < 30). In the undoped material, the intrinsic electron density is very high and as a result there is no detectable photoconductivity (PC) signal within the range of temperatures of 30 150 K, is determined by the longitudinal-optical phonon scattering together with the thermal regeneration of non-equilibrium minority carriers from traps with an average depth of 103 ± 15 meV. This value is close to the Mg binding energy in GaInN. The complementary measurements of transient photoluminescence at liquid He temperatures give the e-A0 binding energy of approximately 100 meV. Furthermore, Hall measurements in the Mg-doped material also indicate an activated behaviour with an acceptor binding energy of 108 ± 20 meV.

9.
Nanoscale Res Lett ; 7(1): 490, 2012 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-22937902

RESUMEN

Electronic transport in unintentionally doped GaxIn1-xN alloys with various Ga concentrations (x = 0.06, 0.32 and 0.52) is studied. Hall effect measurements are performed at temperatures between 77 and 300 K. Temperature dependence of carrier mobility is analysed by an analytical formula based on two-dimensional degenerate statistics by taking into account all major scattering mechanisms for a two-dimensional electron gas confined in a triangular quantum well between GaxIn1-xN epilayer and GaN buffer. Experimental results show that as the Ga concentration increases, mobility not only decreases drastically but also becomes less temperature dependent. Carrier density is almost temperature independent and tends to increase with increasing Ga concentration. The weak temperature dependence of the mobility may be attributed to screening of polar optical phonon scattering at high temperatures by the high free carrier concentration, which is at the order of 1014 cm-2. In our analytical model, the dislocation density is used as an adjustable parameter for the best fit to the experimental results. Our results reveal that in the samples with lower Ga compositions and carrier concentrations, alloy and interface roughness scattering are the dominant scattering mechanisms at low temperatures, while at high temperatures, optical phonon scattering is the dominant mechanism. In the samples with higher Ga compositions and carrier concentrations, however, dislocation scattering becomes more significant and suppresses the effect of longitudinal optical phonon scattering at high temperatures, leading to an almost temperature-independent behaviour.

10.
Nanoscale Res Lett ; 7(1): 525, 2012 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-23009076

RESUMEN

The Top-Hat hot electron light emission and lasing in semiconductor heterostructure (HELLISH)-vertical cavity semiconductor optical amplifier (VCSOA) is a modified version of a HELLISH-VCSOA device. It has a shorter p-channel and longer n-channel. The device studied in this work consists of a simple GaAs p-i-n junction, containing 11 Ga0.35In0.65 N0.02As0.08/GaAs multiple quantum wells in its intrinsic region; the active region is enclosed between six pairs of GaAs/AlAs top distributed Bragg reflector (DBR) mirrors and 20.5 pairs of AlAs/GaAs bottom DBR mirrors. The operation of the device is based on longitudinal current transport parallel to the layers of the GaAs p-n junction. The device is characterised through I-V-L and by spectral photoluminescence, electroluminescence and electro-photoluminescence measurements. An amplification of about 25 dB is observed at applied voltages of around V = 88 V.

11.
Nanoscale Res Lett ; 7(1): 526, 2012 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-23009105

RESUMEN

The hot electron light emitting and lasing in semiconductor heterostructure-vertical-cavity semiconductor optical amplifier (HELLISH-VCSOA) device is based on Ga0.35In0.65 N0.02As0.08/GaAs material for operation in the 1.3-µm window of the optical communications. The device has undoped distributed Bragg reflectors (DBRs). Therefore, problems such as those associated with refractive index contrast and current injection, which are common with doped DBRs in conventional VCSOAs, are avoided. The gain versus applied electric field curves are measured at different wavelengths using a tunable laser as the source signal. The highest gain is obtained for the 1.3-µm wavelength when an electric field in excess of 2 kV/cm is applied along the layers of the device.

12.
Nanoscale Res Lett ; 6(1): 104, 2011 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-21711630

RESUMEN

Hot electron light emission and lasing in semiconductor heterostructure (Hellish) devices are surface emitters the operation of which is based on the longitudinal injection of electrons and holes in the active region. These devices can be designed to be used as vertical cavity surface emitting laser or, as in this study, as a vertical cavity semiconductor optical amplifier (VCSOA). This study investigates the prospects for a Hellish VCSOA based on GaInNAs/GaAs material for operation in the 1.3-µm wavelength range. Hellish VCSOAs have increased functionality, and use undoped distributed Bragg reflectors; and this coupled with direct injection into the active region is expected to yield improvements in the gain and bandwidth. The design of the Hellish VCSOA is based on the transfer matrix method and the optical field distribution within the structure, where the determination of the position of quantum wells is crucial. A full assessment of Hellish VCSOAs has been performed in a device with eleven layers of Ga0.35In0.65N0.02As0.08/GaAs quantum wells (QWs) in the active region. It was characterised through I-V, L-V and by spectral photoluminescence, electroluminescence and electro-photoluminescence as a function of temperature and applied bias. Cavity resonance and gain peak curves have been calculated at different temperatures. Good agreement between experimental and theoretical results has been obtained.

13.
Nanoscale Res Lett ; 6(1): 191, 2011 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-21711766

RESUMEN

Nonlinear charge transport parallel to the layers of p-modulation-doped GaInNAs/GaAs quantum wells (QWs) is studied both theoretically and experimentally. Experimental results show that at low temperature, T = 13 K, the presence of an applied electric field of about 6 kV/cm leads to the heating of the high mobility holes in the GaInNAs QWs, and their real-space transfer (RST) into the low-mobility GaAs barriers. This results in a negative differential mobility and self-generated oscillatory instabilities in the RST regime. We developed an analytical model based upon the coupled nonlinear dynamics of the real-space hole transfer and of the interface potential barrier controlled by space-charge in the doped GaAs layer. Our simulation results predict dc bias-dependent self-generated current oscillations with frequencies in the high microwave range.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...