Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 14: 1236147, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37719225

RESUMEN

Faba bean is an important protein crop for food and feed worldwide and provides a range of advantages in crop rotations. Its limited use in modern agriculture is mainly due to the high fluctuations in yield. A well known limiting factor in most legumes, and particularly in faba bean, is the high sensitivity to water shortage, which is further aggravated by climate change. The present study was undertaken to exploit the genetic variation in drought stress response in a faba bean collection of 100 accessions with diverse origins and to assess selection criteria for identifying drought tolerant genotypes. Physiological, phenological and yield related traits evaluated under drought or water-sufficient conditions responded significantly to the end-terminated drought stress. Comparison of yield relations showed the advantage of using a stress tolerance index (STI) to identify genotypes combining high yield potential with high stress yield. With regard to physiological traits, SPAD (chlorophyll content) values were significantly related to yield as well as to STI, while the other traits also contributed to different extents to variation in yield formation. Among the yield related traits, seeds per plant proved to be the most important trait followed by pods per plant. Interestingly, the eight genotypes with the best STI performance use different strategies to cope with drought stress.

2.
Front Plant Sci ; 14: 1091875, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36818887

RESUMEN

Faba bean (Vicia faba L.) is an important high protein legume adapted to diverse climatic conditions with multiple benefits for the overall sustainability of the cropping systems. Plant-based protein demand is being expanded and faba bean is a good candidate to cover this need. However, the crop is very sensitive to abiotic stresses, especially drought, which severely affects faba bean yield and development worldwide. Therefore, identifying genes associated with drought stress tolerance is a major challenge in faba bean breeding. Although the faba bean response to drought stress has been widely studied, the molecular approaches to improve drought tolerance in this crop are still limited. Here we built on recent genomic advances such as the development of the first high-density SNP genotyping array, to conduct a genome-wide association study (GWAS) using thousands of genetic polymorphisms throughout the entire faba bean genome. A worldwide collection of 100 faba bean accessions was grown under control and drought conditions and 10 morphological, phenological and physiological traits were evaluated to identify single nucleotide polymorphism (SNP) markers associated with drought tolerance. We identified 29 SNP markers significantly correlated with these traits under drought stress conditions. The flanking sequences were blasted to the Medicago truncatula reference genomes in order to annotate potential candidate genes underlying the causal variants. Three of the SNPs for chlorophyll content after the stress, correspond to uncharacterized proteins indicating the presence of novel genes associated with drought tolerance in faba bean. The significance of stress-inducible signal transducers provides valuable information on the possible mechanisms underlying the faba bean response to drought stress, thus providing a foundation for future marker-assisted breeding in the crop.

3.
Plant Cell Environ ; 40(5): 765-778, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28042879

RESUMEN

Soybean cultivation holds great potential for a sustainable agriculture in Europe, but adaptation remains a central issue. In this large mega-environment (MEV) study, 75 European cultivars from five early maturity groups (MGs 000-II) were evaluated for maturity-related traits at 22 locations in 10 countries across Europe. Clustering of the locations based on phenotypic similarity revealed six MEVs in latitudinal direction and suggested several more. Analysis of maturity identified several groups of cultivars with phenotypic similarity that are optimally adapted to the different growing regions in Europe. We identified several haplotypes for the allelic variants at the E1, E2, E3 and E4 genes, with each E haplotype comprising cultivars from different MGs. Cultivars with the same E haplotype can exhibit different flowering and maturity characteristics, suggesting that the genetic control of these traits is more complex and that adaptation involves additional genetic pathways, for example temperature requirement. Taken together, our study allowed the first unified assessment of soybean-growing regions in Europe and illustrates the strong effect of photoperiod on soybean adaptation and MEV classification, as well as the effects of the E maturity loci for soybean adaptation in Europe.


Asunto(s)
Adaptación Fisiológica/genética , Alelos , Ambiente , Variación Genética , Glycine max/genética , Sitios de Carácter Cuantitativo/genética , Análisis por Conglomerados , Europa (Continente) , Flores/genética , Flores/fisiología , Geografía , Haplotipos/genética , Fenotipo , Filogenia , Reproducción/genética
4.
BMC Plant Biol ; 16: 3, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26733420

RESUMEN

BACKGROUND: Drought stress in juvenile stages of crop development and premature leaf senescence induced by drought stress have an impact on biomass production and yield formation of barley (Hordeum vulgare L.). Therefore, in order to get information of regulatory processes involved in the adaptation to drought stress and leaf senescence expression analyses of candidate genes were conducted on a set of 156 barley genotypes in early developmental stages, and expression quantitative trait loci (eQTL) were identified by a genome wide association study. RESULTS: Significant effects of genotype and treatment were detected for leaf colour measured at BBCH 25 as an indicator of leaf senescence and for the expression level of the genes analysed. Furthermore, significant correlations were detected within the group of genes involved in drought stress (r = 0.84) and those acting in leaf senescence (r = 0.64), as well as between leaf senescence genes and the leaf colour (r = 0.34). Based on these expression data and 3,212 polymorphic single nucleotide polymorphisms (SNP) with a minor allele frequency >5% derived from the Illumina 9 k iSelect SNP Chip, eight cis eQTL and seven trans eQTL were found. Out of these an eQTL located on chromosome 3H at 142.1 cM is of special interest harbouring two drought stress genes (GAD3 and P5CS2) and one leaf senescence gene (Contig7437), as well as an eQTL on chromosome 5H at 44.5 cM in which two genes (TRIUR3 and AVP1) were identified to be associated to drought stress tolerance in a previous study. CONCLUSION: With respect to the expression of genes involved in drought stress and early leaf senescence, genotypic differences exist in barley. Major eQTL for the expression of these genes are located on barley chromosome 3H and 5H. Respective markers may be used in future barley breeding programmes for improving tolerance to drought stress and leaf senescence.


Asunto(s)
Adaptación Fisiológica/genética , Sequías , Genes de Plantas , Hordeum/genética , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Hordeum/fisiología , Hojas de la Planta , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Estrés Fisiológico
5.
BMC Plant Biol ; 15: 125, 2015 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-25998066

RESUMEN

BACKGROUND: Premature leaf senescence induced by external stress conditions, e.g. drought stress, is a main factor for yield losses in barley. Research in drought stress tolerance has become more important as due to climate change the number of drought periods will increase and tolerance to drought stress has become a goal of high interest in barley breeding. Therefore, the aim is to identify quantitative trait loci (QTL) involved in drought stress induced leaf senescence and drought stress tolerance in early developmental stages of barley (Hordeum vulgare L.) by applying genome wide association studies (GWAS) on a set of 156 winter barley genotypes. RESULTS: After a four weeks stress period (BBCH 33) leaf colour as an indicator of leaf senescence, electron transport rate at photosystem II, content of free proline, content of soluble sugars, osmolality and the aboveground biomass indicative for drought stress response were determined in the control and stress variant in greenhouse pot experiments. Significant phenotypic variation was observed for all traits analysed. Heritabilities ranged between 0.27 for osmolality and 0.61 for leaf colour in stress treatment and significant effects of genotype, treatment and genotype x treatment were estimated for most traits analysed. Based on these phenotypic data and 3,212 polymorphic single nucleotide polymorphisms (SNP) with a minor allele frequency >5% derived from the Illumina 9 k iSelect SNP Chip, 181 QTL were detected for all traits analysed. Major QTLs for drought stress and leaf senescence were located on chromosome 5H and 2H. BlastX search for associated marker sequences revealed that respective SNPs are in some cases located in proteins related to drought stress or leaf senescence, e.g. nucleotide pyrophosphatase (AVP1) or serine/ threonin protein kinase (SAPK9). CONCLUSIONS: GWAS resulted in the identification of many QTLs involved in drought stress and leaf senescence of which two major QTLs for drought stress and leaf senescence were located on chromosome 5H and 2H. Results may be the basis to incorporate breeding for tolerance to drought stress or leaf senescence in barley breeding via marker based selection procedures.


Asunto(s)
Adaptación Fisiológica/genética , Sequías , Genoma de Planta , Hordeum/crecimiento & desarrollo , Hordeum/genética , Hojas de la Planta/crecimiento & desarrollo , Estrés Fisiológico/genética , Análisis de Varianza , Mapeo Cromosómico , Marcadores Genéticos , Estudio de Asociación del Genoma Completo , Técnicas de Genotipaje , Patrón de Herencia/genética , Fenotipo , Hojas de la Planta/genética , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA