Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Mol Cell Cardiol ; 191: 12-22, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643934

RESUMEN

Doxorubicin (DOX) is a widely used chemotherapeutic agent that can cause serious cardiotoxic side effects, leading to heart failure (HF). Impaired mitochondrial function is thought to be key factor driving progression into HF. We have previously shown in a rat model of DOX-HF that heart failure with reduced ejection fraction correlates with mitochondrial loss and dysfunction. Adenosine monophosphate-dependent kinase (AMPK) is a cellular energy sensor, regulating mitochondrial biogenesis and energy metabolism, including fatty acid oxidation. We hypothesised that AMPK activation could restore mitochondrial function and therefore be a novel cardioprotective strategy for the prevention of DOX-HF. Consequently, we set out to assess whether 5-aminoimidazole-4-carboxamide 1-ß-D-ribofuranoside (AICAR), an activator of AMPK, could prevent cardiac functional decline in this chronic intravenous rat model of DOX-HF. In line with our hypothesis, AICAR improved cardiac systolic function. AICAR furthermore improved cardiac mitochondrial fatty acid oxidation, independent of mitochondrial number, and in the absence of observable AMPK-activation. In addition, we found that AICAR prevented loss of myocardial mass. RNAseq analysis showed that this may be driven by normalisation of pathways associated with ribosome function and protein synthesis, which are impaired in DOX-treated rat hearts. AICAR furthermore prevented dyslipidemia and excessive body-weight loss in DOX-treated rats, which may contribute to preservation of myocardial mass. Though it is unclear whether AICAR exerted its cardioprotective effect through cardiac or extra-cardiac AMPK-activation or via an AMPK-independent effect, these results show promise for the use of AICAR as a cardioprotective agent in DOX-HF to both preserve cardiac function and mass.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Aminoimidazol Carboxamida , Cardiotónicos , Doxorrubicina , Insuficiencia Cardíaca , Ribonucleótidos , Animales , Doxorrubicina/efectos adversos , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Insuficiencia Cardíaca/inducido químicamente , Insuficiencia Cardíaca/prevención & control , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/tratamiento farmacológico , Ribonucleótidos/farmacología , Masculino , Cardiotónicos/farmacología , Ratas , Proteínas Quinasas Activadas por AMP/metabolismo , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/efectos de los fármacos , Miocardio/metabolismo , Miocardio/patología , Ácidos Grasos/metabolismo , Modelos Animales de Enfermedad
2.
Sci Rep ; 13(1): 1613, 2023 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-36709217

RESUMEN

Hyperpolarized carbon-13 magnetic resonance imaging is a promising technique for in vivo metabolic interrogation of alterations between health and disease. This study introduces a formalism for quantifying the metabolic information in hyperpolarized imaging. This study investigated a novel perfusion formalism and metabolic clearance rate (MCR) model in pre-clinical stroke and in the healthy human brain. Simulations showed that the proposed model was robust to perturbations in T1, transmit B1, and kPL. A significant difference in ipsilateral vs contralateral pyruvate derived cerebral blood flow (CBF) was detected in rats (140 ± 2 vs 89 ± 6 mL/100 g/min, p < 0.01, respectively) and pigs (139 ± 12 vs 95 ± 5 mL/100 g/min, p = 0.04, respectively), along with an increase in fractional metabolism (26 ± 5 vs 4 ± 2%, p < 0.01, respectively) in the rodent brain. In addition, a significant increase in ipsilateral vs contralateral MCR (0.034 ± 0.007 vs 0.017 ± 0.02/s, p = 0.03, respectively) and a decrease in mean transit time (31 ± 8 vs 60 ± 2 s, p = 0.04, respectively) was observed in the porcine brain. In conclusion, MCR mapping is a simple and robust approach to the post-processing of hyperpolarized magnetic resonance imaging.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Ratas , Porcinos , Animales , Tasa de Depuración Metabólica , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Ácido Pirúvico/metabolismo , Isótopos de Carbono/metabolismo , Cabeza
3.
Magn Reson Med ; 88(3): 1324-1332, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35468245

RESUMEN

PURPOSE: To determine the effect of altering anesthetic oxygen protocols on measurements of cerebral perfusion and metabolism in the rodent brain. METHODS: Seven rats were anesthetized and underwent serial MRI scans with hyperpolarized [1-13 C]pyruvate and perfusion weighted imaging. The anesthetic carrier gas protocol used varied from 100:0% to 90:10% to 60:40% O2 :N2 O. Spectra were quantified with AMARES and perfusion imaging was processed using model-free deconvolution. A 1-way ANOVA was used to compare results across groups, with pairwise t tests performed with correction for multiple comparisons. Spearman's correlation analysis was performed between O2 % and MR measurements. RESULTS: There was a significant increase in bicarbonate:total 13 C carbon and bicarbonate:13 C pyruvate when moving between 100:0 to 90:10 and 100:0 to 60:40 O2 :N2 O % (0.02 ± 0.01 vs. 0.019 ± 0.005 and 0.02 ± 0.01 vs. 0.05 ± 0.02, respectively) and (0.04 ± 0.01 vs. 0.03 ± 0.01 and 0.04 ± 0.01 vs. 0.08 ± 0.02, respectively). There was a significant difference in 13 C pyruvate time to peak when moving between 100:0 to 90:10 and 100:0 to 60:40 O2 :N2 O % (13 ± 2 vs. 10 ± 1 and 13 ± 2 vs. 7.5 ± 0.5 s, respectively) as well as significant differences in cerebral blood flow (CBF) between gas protocols. Significant correlations between bicarbonate:13 C pyruvate and gas protocol (ρ = -0.47), mean transit time and gas protocol (ρ = 0.41) and 13 C pyruvate time-to-peak and cerebral blood flow (ρ = -0.54) were also observed. CONCLUSIONS: These results demonstrate that the detection and quantification of cerebral metabolism and perfusion is dependent on the oxygen protocol used in the anesthetized rodent brain.


Asunto(s)
Anestésicos por Inhalación , Bicarbonatos , Anestésicos por Inhalación/farmacología , Animales , Bicarbonatos/metabolismo , Encéfalo/metabolismo , Isótopos de Carbono/metabolismo , Imagen por Resonancia Magnética/métodos , Oxígeno/metabolismo , Ácido Pirúvico/metabolismo , Ratas
4.
Cardiovasc Res ; 118(14): 2946-2959, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34897412

RESUMEN

AIMS: In cardiomyocytes, acute disturbances to intracellular pH (pHi) are promptly corrected by a system of finely tuned sarcolemmal acid-base transporters. However, these fluxes become thermodynamically re-balanced in acidic environments, which inadvertently causes their set-point pHi to fall outside the physiological range. It is unclear whether an adaptive mechanism exists to correct this thermodynamic challenge, and return pHi to normal. METHODS AND RESULTS: Following left ventricle cryo-damage, a diffuse pattern of low extracellular pH (pHe) was detected by acid-sensing pHLIP. Despite this, pHi measured in the beating heart (13C NMR) was normal. Myocytes had adapted to their acidic environment by reducing Cl-/HCO3- exchange (CBE)-dependent acid-loading and increasing Na+/H+ exchange (NHE1)-dependent acid-extrusion, as measured by fluorescence (cSNARF1). The outcome of this adaptation on pHi is revealed as a cytoplasmic alkalinization when cells are superfused at physiological pHe. Conversely, mice given oral bicarbonate (to improve systemic buffering) had reduced myocardial NHE1 expression, consistent with a needs-dependent expression of pHi-regulatory transporters. The response to sustained acidity could be replicated in vitro using neonatal ventricular myocytes incubated at low pHe for 48 h. The adaptive increase in NHE1 and decrease in CBE activities was linked to Slc9a1 (NHE1) up-regulation and Slc4a2 (AE2) down-regulation. This response was triggered by intracellular H+ ions because it persisted in the absence of CO2/HCO3- and became ablated when acidic incubation media had lower chloride, a solution manoeuvre that reduces the extent of pHi-decrease. Pharmacological inhibition of FAK-family non-receptor kinases, previously characterized as pH-sensors, ablated this pHi autoregulation. In support of a pHi-sensing role, FAK protein Pyk2 (auto)phosphorylation was reduced within minutes of exposure to acidity, ahead of adaptive changes to pHi control. CONCLUSIONS: Cardiomyocytes fine-tune the expression of pHi-regulators so that pHi is at least 7.0. This autoregulatory feedback mechanism defines physiological pHi and protects it during pHe vulnerabilities.


Asunto(s)
Bicarbonatos , Miocitos Cardíacos , Animales , Ratones , Miocitos Cardíacos/metabolismo , Concentración de Iones de Hidrógeno , Bicarbonatos/metabolismo , Simportadores de Sodio-Bicarbonato/metabolismo , Miocardio/metabolismo , Sodio/metabolismo , Cloruros/metabolismo , Cloruros/farmacología , Proteínas de Transporte de Membrana/metabolismo
5.
Metabolites ; 11(3)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33806953

RESUMEN

The diabetic heart is energetically and metabolically abnormal, with increased fatty acid oxidation and decreased glucose oxidation. One factor contributing to the metabolic dysfunction in diabetes may be abnormal handling of acetyl and acyl groups by the mitochondria. L-carnitine is responsible for their transfer across the mitochondrial membrane, therefore, supplementation with L-carnitine may provide a route to improve the metabolic state of the diabetic heart. The primary aim of this study was to use hyperpolarized magnetic resonance imaging (MRI) to investigate the effects of L-carnitine supplementation on the in vivo metabolism of [1-13C]pyruvate in diabetes. Male Wistar rats were injected with either vehicle or streptozotocin (55 mg/kg) to induce type-1 diabetes. Three weeks of daily i.p. treatment with either saline or L-carnitine (3 g/kg/day) was subsequently undertaken. In vivo cardiac function and metabolism were assessed with CINE and hyperpolarized MRI, respectively. L-carnitine supplementation prevented the progression of hyperglycemia, which was observed in untreated streptozotocin injected animals and led to reductions in plasma triglyceride and ß-hydroxybutyrate concentrations. Hyperpolarized MRI revealed that L-carnitine treatment elevated pyruvate dehydrogenase flux by 3-fold in the diabetic animals, potentially through increased buffering of excess acetyl-CoA units in the mitochondria. Improved functional recovery following ischemia was also observed in the L-carnitine treated diabetic animals.

6.
NMR Biomed ; 34(4): e4471, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33458907

RESUMEN

The diabetic heart has a decreased ability to metabolize glucose. The anti-ischemic drug meldonium may provide a route to counteract this by reducing l-carnitine levels, resulting in improved cardiac glucose utilization. Therefore, the aim of this study was to use the novel technique of hyperpolarized magnetic resonance to investigate the in vivo effects of treatment with meldonium on cardiac metabolism and function in control and diabetic rats. Thirty-six male Wistar rats were injected either with vehicle, or with streptozotocin (55 mg/kg) to induce a model of type 1 diabetes. Daily treatment with either saline or meldonium (100 mg/kg/day) was undertaken for three weeks. in vivo cardiac function and metabolism were assessed with CINE MRI and hyperpolarized magnetic resonance respectively. Isolated perfused hearts were challenged with low-flow ischemia/reperfusion to assess the impact of meldonium on post-ischemic recovery. Meldonium had no significant effect on blood glucose concentrations or on baseline cardiac function. However, hyperpolarized magnetic resonance revealed that meldonium treatment elevated pyruvate dehydrogenase flux by 3.1-fold and 1.2-fold in diabetic and control animals, respectively, suggesting an increase in cardiac glucose oxidation. Hyperpolarized magnetic resonance further demonstrated that meldonium reduced the normalized acetylcarnitine signal by 2.1-fold in both diabetic and control animals. The increase in pyruvate dehydrogenase flux in vivo was accompanied by an improvement in post-ischemic function ex vivo, as meldonium elevated the rate pressure product by 1.3-fold and 1.5-fold in the control and diabetic animals, respectively. In conclusion, meldonium improves in vivo pyruvate dehydrogenase flux in the diabetic heart, contributing to improved cardiac recovery after ischemia.


Asunto(s)
Diabetes Mellitus Experimental/complicaciones , Espectroscopía de Resonancia Magnética/métodos , Metilhidrazinas/uso terapéutico , Isquemia Miocárdica/tratamiento farmacológico , Complejo Piruvato Deshidrogenasa/fisiología , Animales , Glucosa/metabolismo , Masculino , Metabolómica , Metilhidrazinas/farmacología , Isquemia Miocárdica/fisiopatología , Miocardio/metabolismo , Ratas , Ratas Wistar , Estreptozocina
7.
Front Physiol ; 12: 782745, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35069242

RESUMEN

Doxorubicin (DOX) is a successful chemotherapeutic widely used for the treatment of a range of cancers. However, DOX can have serious side-effects, with cardiotoxicity and hepatotoxicity being the most common events. Oxidative stress and changes in metabolism and bioenergetics are thought to be at the core of these toxicities. We have previously shown in a clinically-relevant rat model that a low DOX dose of 2 mg kg-1 week-1 for 6 weeks does not lead to cardiac functional decline or changes in cardiac carbohydrate metabolism, assessed with hyperpolarized [1-13C]pyruvate magnetic resonance spectroscopy (MRS). We now set out to assess whether there are any signs of liver damage or altered liver metabolism using this subclinical model. We found no increase in plasma alanine aminotransferase (ALT) activity, a measure of liver damage, following DOX treatment in rats at any time point. We also saw no changes in liver carbohydrate metabolism, using hyperpolarized [1-13C]pyruvate MRS. However, using metabolomic analysis of liver metabolite extracts at the final time point, we found an increase in most acyl-carnitine species as well as increases in high energy phosphates, citrate and markers of oxidative stress. This may indicate early signs of steatohepatitis, with increased and decompensated fatty acid uptake and oxidation, leading to oxidative stress.

8.
Magn Reson Med ; 85(2): 790-801, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32894618

RESUMEN

PURPOSE: Hyperpolarized imaging experiments have conflicting requirements of high spatial, temporal, and spectral resolution. Spectral-spatial RF excitation has been shown to form an attractive magnetization-efficient method for hyperpolarized imaging, but the optimum readout strategy is not yet known. METHODS: In this work, we propose a novel 3D hybrid-shot spiral sequence which features two constant density regions that permit the retrospective reconstruction of either high spatial or high temporal resolution images post hoc, (adaptive spatiotemporal imaging) allowing greater flexibility in acquisition and reconstruction. RESULTS: We have implemented this sequence, both via simulation and on a preclinical scanner, to demonstrate its feasibility, in both a 1H phantom and with hyperpolarized 13C pyruvate in vivo. CONCLUSIONS: This sequence forms an attractive method for acquiring hyperpolarized imaging datasets, providing adaptive spatiotemporal imaging to ameliorate the conflict of spatial and temporal resolution, with significant potential for clinical translation.


Asunto(s)
Imagen Eco-Planar , Ácido Pirúvico , Isótopos de Carbono , Imagenología Tridimensional , Imagen por Resonancia Magnética , Fantasmas de Imagen , Estudios Retrospectivos
9.
Commun Biol ; 3(1): 692, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33214680

RESUMEN

Doxorubicin (DOX) is a widely used chemotherapeutic agent that can cause serious cardiotoxic side effects culminating in congestive heart failure (HF). There are currently no clinical imaging techniques or biomarkers available to detect DOX-cardiotoxicity before functional decline. Mitochondrial dysfunction is thought to be a key factor driving functional decline, though real-time metabolic fluxes have never been assessed in DOX-cardiotoxicity. Hyperpolarized magnetic resonance imaging (MRI) can assess real-time metabolic fluxes in vivo. Here we show that cardiac functional decline in a clinically relevant rat-model of DOX-HF is preceded by a change in oxidative mitochondrial carbohydrate metabolism, measured by hyperpolarized MRI. The decreased metabolic fluxes were predominantly due to mitochondrial loss and additional mitochondrial dysfunction, and not, as widely assumed hitherto, to oxidative stress. Since hyperpolarized MRI has been successfully translated into clinical trials this opens up the potential to test cancer patients receiving DOX for early signs of cardiotoxicity.


Asunto(s)
Antibióticos Antineoplásicos/toxicidad , Cardiotoxicidad/diagnóstico por imagen , Doxorrubicina/toxicidad , Corazón/efectos de los fármacos , Corazón/diagnóstico por imagen , Animales , Imagen por Resonancia Magnética , Estrés Oxidativo , Ratas
10.
Front Cardiovasc Med ; 7: 616920, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33553263

RESUMEN

Iron deficiency is the most prevalent micronutrient disorder globally. When severe, iron deficiency leads to anemia, which can be deleterious to cardiac function. Given the central role of iron and oxygen in cardiac biology, multiple pathways are expected to be altered in iron-deficiency anemia, and identifying these requires an unbiased approach. To investigate these changes, gene expression and metabolism were studied in mice weaned onto an iron-deficient diet for 6 weeks. Whole-exome transcriptomics (RNAseq) identified over 1,500 differentially expressed genes (DEGs), of which 22% were upregulated and 78% were downregulated in the iron-deficient group, relative to control animals on an iron-adjusted diet. The major biological pathways affected were oxidative phosphorylation and pyruvate metabolism, as well as cardiac contraction and responses related to environmental stress. Cardiac metabolism was studied functionally using in vitro and in vivo methodologies. Spectrometric measurement of the activity of the four electron transport chain complexes in total cardiac lysates showed that the activities of Complexes I and IV were reduced in the hearts of iron-deficient animals. Pyruvate metabolism was assessed in vivo using hyperpolarized 13C magnetic resonance spectroscopy (MRS) of hyperpolarized pyruvate. Hearts from iron-deficient and anemic animals showed significantly decreased flux through pyruvate dehydrogenase and increased lactic acid production, consistent with tissue hypoxia and induction of genes coding for glycolytic enzymes and H+-monocarboxylate transport-4. Our results show that iron-deficiency anemia results in a metabolic remodeling toward a glycolytic, lactic acid-producing phenotype, a hallmark of hypoxia.

11.
NMR Biomed ; 32(7): e4099, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31090979

RESUMEN

Hypoxia plays a role in many diseases and can have a wide range of effects on cardiac metabolism depending on the extent of the hypoxic insult. Noninvasive imaging methods could shed valuable light on the metabolic effects of hypoxia on the heart in vivo. Hyperpolarized carbon-13 magnetic resonance spectroscopy (HP 13 C MRS) in particular is an exciting technique for imaging metabolism that could provide such information. The aim of our work was, therefore, to establish whether hyperpolarized 13 C MRS can be used to assess the in vivo heart's metabolism of pyruvate in response to systemic acute and chronic hypoxic exposure. Groups of healthy male Wistar rats were exposed to either acute (30 minutes), 1 week or 3 weeks of hypoxia. In vivo MRS of hyperpolarized [1-13 C] pyruvate was carried out along with assessments of physiological parameters and ejection fraction. Hematocrit was elevated after 1 week and 3 weeks of hypoxia. 30 minutes of hypoxia resulted in a significant reduction in pyruvate dehydrogenase (PDH) flux, whereas 1 or 3 weeks of hypoxia resulted in a PDH flux that was not different to normoxic animals. Conversion of hyperpolarized [1-13 C] pyruvate into [1-13 C] lactate was elevated following acute hypoxia, suggestive of enhanced anaerobic glycolysis. Elevated HP pyruvate to lactate conversion was also seen at the one week timepoint, in concert with an increase in lactate dehydrogenase (LDH) expression. Following three weeks of hypoxic exposure, cardiac metabolism of pyruvate was comparable with that observed in normoxia. We have successfully visualized the effects of systemic hypoxia on cardiac metabolism of pyruvate using hyperpolarized 13 C MRS, with differences observed following 30 minutes and 1 week of hypoxia. This demonstrates the potential of in vivo hyperpolarized 13 C MRS data for assessing the cardiometabolic effects of hypoxia in disease.


Asunto(s)
Espectroscopía de Resonancia Magnética con Carbono-13 , Hipoxia/metabolismo , Miocardio/metabolismo , Animales , Hipoxia/sangre , Masculino , Oxígeno/sangre , Ratas Wistar
12.
Hum Mol Genet ; 28(3): 396-406, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30281092

RESUMEN

Duchenne muscular dystrophy (DMD) is caused by loss of dystrophin protein, leading to progressive muscle weakness and premature death due to respiratory and/or cardiac complications. Cardiac involvement is characterized by progressive dilated cardiomyopathy, decreased fractional shortening and metabolic dysfunction involving reduced metabolism of fatty acids-the major cardiac metabolic substrate. Several mouse models have been developed to study molecular and pathological consequences of dystrophin deficiency, but do not recapitulate all aspects of human disease pathology and exhibit a mild cardiac phenotype. Here we demonstrate that Cmah (cytidine monophosphate-sialic acid hydroxylase)-deficient mdx mice (Cmah-/-;mdx) have an accelerated cardiac phenotype compared to the established mdx model. Cmah-/-;mdx mice display earlier functional deterioration, specifically a reduction in right ventricle (RV) ejection fraction and stroke volume (SV) at 12 weeks of age and decreased left ventricle diastolic volume with subsequent reduced SV compared to mdx mice by 24 weeks. They further show earlier elevation of cardiac damage markers for fibrosis (Ctgf), oxidative damage (Nox4) and haemodynamic load (Nppa). Cardiac metabolic substrate requirement was assessed using hyperpolarized magnetic resonance spectroscopy indicating increased in vivo glycolytic flux in Cmah-/-;mdx mice. Early upregulation of mitochondrial genes (Ucp3 and Cpt1) and downregulation of key glycolytic genes (Pdk1, Pdk4, Ppara), also denote disturbed cardiac metabolism and shift towards glucose utilization in Cmah-/-;mdx mice. Moreover, we show long-term treatment with peptide-conjugated exon skipping antisense oligonucleotides (20-week regimen), resulted in 20% cardiac dystrophin protein restoration and significantly improved RV cardiac function. Therefore, Cmah-/-;mdx mice represent an appropriate model for evaluating cardiac benefit of novel DMD therapeutics.


Asunto(s)
Citidina Monofosfato/genética , Distrofina/deficiencia , Morfolinos/uso terapéutico , Animales , Cardiomiopatía Dilatada/genética , Carnitina O-Palmitoiltransferasa/genética , Factor de Crecimiento del Tejido Conjuntivo/análisis , Citidina Monofosfato/fisiología , Modelos Animales de Enfermedad , Distrofina/genética , Distrofina/metabolismo , Exones , Terapia Genética/métodos , Corazón/fisiopatología , Masculino , Ratones , Ratones Endogámicos mdx , Oxigenasas de Función Mixta/metabolismo , Distrofia Muscular de Duchenne/genética , Miocardio/metabolismo , NADPH Oxidasa 4/análisis , Oligonucleótidos Antisentido/genética , Péptidos/genética , Fenotipo , Volumen Sistólico , Proteína Desacopladora 3/genética , Función Ventricular Derecha
13.
NMR Biomed ; 31(9): e3992, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30040147

RESUMEN

Hyperpolarized [1-13 C] pyruvate MRS can measure cardiac pyruvate dehydrogenase (PDH) flux in vivo through 13 C-label incorporation into bicarbonate. Using this technology, substrate availability as well as pathology have been shown to modulate PDH flux. Clinical protocols attempt to standardize PDH flux with oral glucose loading prior to scanning, while rodents in preclinical studies are usually scanned in the fed state. We aimed to establish which strategy was optimal to maximize PDH flux and minimize its variability in both control and Type II diabetic rats, without affecting the pathological variation being assessed. We found similar variances in the bicarbonate to pyruvate ratio, reflecting PDH flux, in fed and fasted/glucose-loaded animals, which showed no statistically significant differences. Furthermore, fasting/glucose loading did not alter the low PDH flux seen in Type II diabetic rats. Overall this suggests that preclinical cardiac hyperpolarized magnetic resonance studies could be performed either in the fed or in the fasted/glucose-loaded state. Centres planning to start new clinical studies with cardiac hyperpolarized magnetic resonance in man may find it beneficial to run small proof-of-concept trials to determine whether metabolic standardizations by oral or intravenous glucose load are beneficial compared with scanning patients in the fed state.


Asunto(s)
Espectroscopía de Resonancia Magnética , Miocardio/enzimología , Complejo Piruvato Deshidrogenasa/metabolismo , Animales , Bicarbonatos/metabolismo , Glucemia/metabolismo , Femenino , Ácido Pirúvico/metabolismo , Ratas Wistar
14.
Diabetes ; 67(6): 1057-1067, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29610263

RESUMEN

Diabetes is a well-established risk factor for heart disease, leading to impaired cardiac function and a metabolic switch toward fatty acid usage. In this study, we investigated if hyperglycemia/hypoinsulinemia in the absence of dyslipidemia is sufficient to drive these changes and if they can be reversed by restoring euglycemia. Using the ßV59M mouse model, in which diabetes can be rapidly induced and reversed, we show that stroke volume and cardiac output were reduced within 2 weeks of diabetes induction. Flux through pyruvate dehydrogenase was decreased, as measured in vivo by hyperpolarized [1-13C]pyruvate MRS. Metabolomics showed accumulation of pyruvate, lactate, alanine, tricarboxyclic acid cycle metabolites, and branched-chain amino acids. Myristic and palmitoleic acid were decreased. Proteomics revealed proteins involved in fatty acid metabolism were increased, whereas those involved in glucose metabolism decreased. Western blotting showed enhanced pyruvate dehydrogenase kinase 4 (PDK4) and uncoupling protein 3 (UCP3) expression. Elevated PDK4 and UCP3 and reduced pyruvate usage were present 24 h after diabetes induction. The observed effects were independent of dyslipidemia, as mice showed no evidence of elevated serum triglycerides or lipid accumulation in peripheral organs (including the heart). The effects of diabetes were reversible, as glibenclamide therapy restored euglycemia, cardiac metabolism and function, and PDK4/UCP3 levels.


Asunto(s)
Cardiomiopatías Diabéticas/metabolismo , Modelos Animales de Enfermedad , Metabolismo Energético , Regulación de la Expresión Génica , Corazón/fisiopatología , Miocardio/metabolismo , Disfunción Ventricular Izquierda/metabolismo , Sustitución de Aminoácidos , Animales , Gasto Cardíaco/efectos de los fármacos , Cardiomiopatías Diabéticas/complicaciones , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/fisiopatología , Dislipidemias/sangre , Dislipidemias/complicaciones , Dislipidemias/metabolismo , Metabolismo Energético/efectos de los fármacos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Corazón/diagnóstico por imagen , Corazón/efectos de los fármacos , Hipoglucemiantes/uso terapéutico , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Metabolómica/métodos , Ratones Mutantes , Ratones Transgénicos , Mutación , Miocardio/enzimología , Especificidad de Órganos , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , Proteómica/métodos , Volumen Sistólico/efectos de los fármacos , Disfunción Ventricular Izquierda/complicaciones , Disfunción Ventricular Izquierda/tratamiento farmacológico , Disfunción Ventricular Izquierda/fisiopatología
15.
JACC Cardiovasc Imaging ; 11(11): 1594-1606, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29248653

RESUMEN

OBJECTIVES: The aim of this study was to determine if hyperpolarized [1,4-13C2]malate imaging could measure cardiomyocyte necrosis after myocardial infarction (MI). BACKGROUND: MI is defined by an acute burst of cellular necrosis and the subsequent cascade of structural and functional adaptations. Quantifying necrosis in the clinic after MI remains challenging. Magnetic resonance-based detection of the conversion of hyperpolarized [1,4-13C2]fumarate to [1,4-13C2]malate, enabled by disrupted cell membrane integrity, has measured cellular necrosis in vivo in other tissue types. Our aim was to determine whether hyperpolarized [1,4-13C2]malate imaging could measure necrosis after MI. METHODS: Isolated perfused hearts were given hyperpolarized [1,4-13C2]fumarate at baseline, immediately after 20 min of ischemia, and after 45 min of reperfusion. Magnetic resonance spectroscopy measured conversion into [1,4-13C2]malate. Left ventricular function and energetics were monitored throughout the protocol, buffer samples were collected and hearts were preserved for further analyses. For in vivo studies, magnetic resonance spectroscopy and a novel spatial-spectral magnetic resonance imaging sequence were implemented to assess cardiomyocyte necrosis in rats, 1 day and 1 week after cryo-induced MI. RESULTS: In isolated hearts, [1,4-13C2]malate production became apparent after 45 min of reperfusion, and increased 2.7-fold compared with baseline. Expression of dicarboxylic acid transporter genes were negligible in healthy and reperfused hearts, and lactate dehydrogenase release and infarct size were significantly increased in reperfused hearts. Nonlinear regression revealed that [1,4-13C2]malate production was induced when adenosine triphosphate was depleted by >50%, below 5.3 mmol/l (R2 = 0.904). In vivo, the quantity of [1,4-13C2]malate visible increased 82-fold over controls 1 day after infarction, maintaining a 31-fold increase 7 days post-infarct. [1,4-13C2]Malate could be resolved using hyperpolarized magnetic resonance imaging in the infarct region one day after MI; [1,4-13C2]malate was not visible in control hearts. CONCLUSIONS: Malate production in the infarcted heart appears to provide a specific probe of necrosis acutely after MI, and for at least 1 week afterward. This technique could offer an alternative noninvasive method to measure cellular necrosis in heart disease, and warrants further investigation in patients.


Asunto(s)
Isótopos de Carbono/administración & dosificación , Espectroscopía de Resonancia Magnética con Carbono-13 , Medios de Contraste/administración & dosificación , Fumaratos/administración & dosificación , Imagen por Resonancia Cinemagnética , Imagen Molecular/métodos , Infarto del Miocardio/diagnóstico por imagen , Miocitos Cardíacos/patología , Animales , Isótopos de Carbono/metabolismo , Medios de Contraste/metabolismo , Metabolismo Energético , Fumaratos/metabolismo , Preparación de Corazón Aislado , Malatos/metabolismo , Masculino , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocitos Cardíacos/metabolismo , Necrosis , Valor Predictivo de las Pruebas , Ratas Wistar
16.
Elife ; 52016 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-27897970

RESUMEN

Hepcidin is the master regulator of systemic iron homeostasis. Derived primarily from the liver, it inhibits the iron exporter ferroportin in the gut and spleen, the sites of iron absorption and recycling respectively. Recently, we demonstrated that ferroportin is also found in cardiomyocytes, and that its cardiac-specific deletion leads to fatal cardiac iron overload. Hepcidin is also expressed in cardiomyocytes, where its function remains unknown. To define the function of cardiomyocyte hepcidin, we generated mice with cardiomyocyte-specific deletion of hepcidin, or knock-in of hepcidin-resistant ferroportin. We find that while both models maintain normal systemic iron homeostasis, they nonetheless develop fatal contractile and metabolic dysfunction as a consequence of cardiomyocyte iron deficiency. These findings are the first demonstration of a cell-autonomous role for hepcidin in iron homeostasis. They raise the possibility that such function may also be important in other tissues that express both hepcidin and ferroportin, such as the kidney and the brain.


Asunto(s)
Hepcidinas/metabolismo , Homeostasis , Hierro/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Técnicas de Sustitución del Gen , Técnicas de Inactivación de Genes , Hepcidinas/genética , Ratones
17.
NMR Biomed ; 29(12): 1759-1767, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27779334

RESUMEN

Understanding and assessing diabetic metabolism is vital for monitoring disease progression and improving treatment of patients. In vivo assessments, using MRI and MRS, provide non-invasive and accurate measurements, and the development of hyperpolarized 13 C spectroscopy in particular has been demonstrated to provide valuable metabolic data in real time. Until now, studies have focussed on individual organs. However, diabetes is a systemic disease affecting multiple tissues in the body. Therefore, we have developed a technique to simultaneously measure metabolism in both the heart and liver during a single acquisition. A hyperpolarized 13 C MRS protocol was developed to allow acquisition of metabolic data from the heart and liver during a single scan. This protocol was subsequently used to assess metabolism in the heart and liver of seven control male Wistar rats and seven diabetic rats (diabetes was induced by three weeks of high-fat feeding and a 30 mg/kg injection of streptozotocin). Using our new acquisition, we observed decreased cardiac and hepatic pyruvate dehydrogenase flux in our diabetic rat model. These diabetic rats also had increased blood glucose levels, decreased insulin, and increased hepatic triglycerides. Decreased production of hepatic [1-13 C]alanine was observed in the diabetic group, but this change was not present in the hearts of the same diabetic animals. We have demonstrated the ability to measure cardiac and hepatic metabolism simultaneously, with sufficient sensitivity to detect metabolic alterations in both organs. Further, we have non-invasively observed the different reactions of the heart and liver to the metabolic challenge of diabetes.


Asunto(s)
Espectroscopía de Resonancia Magnética con Carbono-13 , Diabetes Mellitus/metabolismo , Hígado/metabolismo , Análisis de Flujos Metabólicos , Imagen Molecular/métodos , Miocardio/metabolismo , Ácido Pirúvico/metabolismo , Alanina/metabolismo , Algoritmos , Animales , Bicarbonatos/metabolismo , Sistemas de Computación , Ácido Láctico/metabolismo , Aprendizaje Automático , Masculino , Ratas , Ratas Wistar , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Procesamiento de Señales Asistido por Computador
18.
Magn Reson Med ; 75(4): 1515-24, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25991606

RESUMEN

PURPOSE: Hyperpolarized metabolic imaging has the potential to revolutionize the diagnosis and management of diseases where metabolism is dysregulated, such as heart disease. We investigated the feasibility of imaging rodent myocardial metabolism at high resolution at 7 T. METHODS: We present here a fly-back spectral-spatial radiofrequency pulse that sidestepped maximum gradient strength requirements and enabled high resolution metabolic imaging of the rodent myocardium. A 3D echo-planar imaging readout followed, with centric ordered z-phase encoding. The cardiac gated sequence was used to image metabolism in rodents whose metabolic state had been manipulated by being fasted, fed, or fed and given the pyruvate dehydrogenase kinase inhibitor dichloroacetate. RESULTS: We imaged hyperpolarized metabolites with a spatial resolution of 2×2×3.8 mm(3) and a temporal resolution of 1.8 s in the rat heart at 7 T. Significant differences in myocardial pyruvate dehydrogenase flux were observed between the three groups of animals, concomitant with the known biochemistry. CONCLUSION: The proposed sequence was able to image in vivo metabolism with excellent spatial resolution in the rat heart. The field of view enabled the simultaneous multi-organ acquisition of metabolic information from the rat, which is of great utility for preclinical research in cardiovascular disease. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance.


Asunto(s)
Isótopos de Carbono/metabolismo , Imagen Eco-Planar/métodos , Corazón/diagnóstico por imagen , Imagenología Tridimensional/métodos , Algoritmos , Animales , Masculino , Ratas , Ratas Wistar , Relación Señal-Ruido
19.
Stem Cells Transl Med ; 4(12): 1403-14, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26518239

RESUMEN

UNLABELLED: Mesenchymal stem cells offer a promising approach to the treatment of myocardial infarction and prevention of heart failure. However, in the clinic, cells will be isolated from patients who may be suffering from comorbidities such as obesity and diabetes, which are known to adversely affect progenitor cells. Here we determined the effect of a high-fat diet (HFD) on mesenchymal stem cells from cardiac and adipose tissues. Mice were fed a HFD for 4 months, after which cardiosphere-derived cells (CDCs) were cultured from atrial tissue and adipose-derived mesenchymal cells (ADMSCs) were isolated from epididymal fat depots. HFD raised body weight, fasted plasma glucose, lactate, and insulin. Ventricle and liver tissue of HFD-fed mice showed protein changes associated with an early type 2 diabetic phenotype. At early passages, more ADMSCs were obtained from HFD-fed mice than from chow-fed mice, whereas CDC number was not affected by HFD. Migratory and clonogenic capacity and release of vascular endothelial growth factor did not differ between cells from HFD- and chow-fed animals. CDCs from chow-fed and HFD-fed mice showed no differences in surface marker expression, whereas ADMSCs from HFD-fed mice contained more cells positive for CD105, DDR2, and CD45, suggesting a high component of endothelial, fibroblast, and hematopoietic cells. Both Noggin and transforming growth factor ß-supplemented medium induced an early stage of differentiation in CDCs toward the cardiomyocyte phenotype. Thus, although chronic high-fat feeding increased the number of fibroblasts and hematopoietic cells within the ADMSC population, it left cardiac progenitor cells largely unaffected. SIGNIFICANCE: Mesenchymal cells are a promising candidate cell source for restoring lost tissue and thereby preventing heart failure. In the clinic, cells are isolated from patients who may be suffering from comorbidities such as obesity and diabetes. This study examined the effect of a high-fat diet on mesenchymal cells from cardiac and adipose tissues. It was demonstrated that a high-fat diet did not affect cardiac progenitor cells but increased the number of fibroblasts and hematopoietic cells within the adipose-derived mesenchymal cell population.


Asunto(s)
Tejido Adiposo/metabolismo , Diferenciación Celular/efectos de los fármacos , Grasas de la Dieta/farmacología , Células Madre Mesenquimatosas/metabolismo , Miocitos Cardíacos/metabolismo , Tejido Adiposo/citología , Animales , Atrios Cardíacos/citología , Atrios Cardíacos/metabolismo , Células Madre Mesenquimatosas/citología , Ratones , Miocitos Cardíacos/citología , Obesidad/metabolismo
20.
Diabetes ; 64(8): 2735-43, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25795215

RESUMEN

Although diabetic cardiomyopathy is widely recognized, there are no specific treatments available. Altered myocardial substrate selection has emerged as a candidate mechanism behind the development of cardiac dysfunction in diabetes. As pyruvate dehydrogenase (PDH) activity appears central to the balance of substrate use, we aimed to investigate the relationship between PDH flux and myocardial function in a rodent model of type 2 diabetes and to explore whether or not increasing PDH flux, with dichloroacetate, would restore the balance of substrate use and improve cardiac function. All animals underwent in vivo hyperpolarized [1-(13)C]pyruvate magnetic resonance spectroscopy and echocardiography to assess cardiac PDH flux and function, respectively. Diabetic animals showed significantly higher blood glucose levels (10.8 ± 0.7 vs. 8.4 ± 0.5 mmol/L), lower PDH flux (0.005 ± 0.001 vs. 0.017 ± 0.002 s(-1)), and significantly impaired diastolic function (transmitral early diastolic peak velocity/early diastolic myocardial velocity ratio [E/E'] 12.2 ± 0.8 vs. 20 ± 2), which are in keeping with early diabetic cardiomyopathy. Twenty-eight days of treatment with dichloroacetate restored PDH flux to normal levels (0.018 ± 0.002 s(-1)), reversed diastolic dysfunction (E/E' 14 ± 1), and normalized blood glucose levels (7.5 ± 0.7 mmol/L). The treatment of diabetes with dichloroacetate therefore restored the balance of myocardial substrate selection, reversed diastolic dysfunction, and normalized blood glucose levels. This suggests that PDH modulation could be a novel therapy for the treatment and/or prevention of diabetic cardiomyopathy.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatías Diabéticas/tratamiento farmacológico , Ácido Dicloroacético/uso terapéutico , Complejo Piruvato Deshidrogenasa/metabolismo , Animales , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/diagnóstico por imagen , Diabetes Mellitus Tipo 2/patología , Cardiomiopatías Diabéticas/diagnóstico por imagen , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Ecocardiografía , Insulina/sangre , Lípidos/sangre , Espectroscopía de Resonancia Magnética , Masculino , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...