Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mater Sci Mater Med ; 32(5): 55, 2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-33961158

RESUMEN

Present investigation focuses on development and detailed characterization of a new Mg alloy sample (BM) with and without coating of hydroxyapatite (BMH) and bioactive glass (BMG) by air plasma spray method. After detailed mechano-physico-chemical characterization of powders and coated samples, electrochemical corrosion and SBF immersion tests were carried out. Detailed in vitro characterizations for cell viability were undertaken using MG-63 cell line followed by in vivo tests in rabbit model for studying bone healing up to 60 days. Starting current density increases from BM to BMH to BMG indicating highest resistance towards corrosion in case of BMG samples, however BMH also showed highest icorr value suggesting slowest rate of corrosion than BM and BMG samples. Dissolution of calcium ion in case of BMH and BMG control formation of apatite phases on surface. Ca2+ ions of coatings and from SBF solution underwent reduction reaction simultaneously with conversion of Mg to MgCl2 releasing OH- in the solution, which increases pH. Viability and propagation of human osteoblast-like cells was verified using confocal microscopy observations and from expression of bone specific genes. Alkaline phosphatase assay and ARS staining indicate cell proliferation and production of neo-osseous tissue matrix. In vivo, based on histology of heart, kidney and liver, and immune response of IL-2, IL-6 and TNFα, all the materials show no adverse effects in body system. The bone creation was observed to be more for BMH. Although both BMH and BMG show rays of possibilities in early new bone formation and tough bone-implant bonding at interface as compared to bare Mg alloy, however, BMG showed better well-sprayed coating covering on substrate and resistance against corrosion prior implanting in vivo. Also, better apatite formation on this sample makes it more favourable implant.


Asunto(s)
Fosfatos de Calcio/química , Calcio/química , Vidrio/química , Magnesio/química , Zinc/química , Aleaciones/química , Animales , Línea Celular , Supervivencia Celular , Materiales Biocompatibles Revestidos/química , Corrosión , Humanos , Ensayo de Materiales , Osteoblastos/fisiología , Prótesis e Implantes , Conejos , Propiedades de Superficie
2.
Mater Sci Eng C Mater Biol Appl ; 111: 110764, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32279774

RESUMEN

To reconstruct the defects caused by craniectomies autologous, bone grafting was usually used, but they failed most commonly due to bone resorption, infections and donor-site morbidity. In the present investigation, an effort has been made for the first time to check the feasibility and advantage of using hydroxyapatite (HAp) coated e-glass as component of bone implants. Sol-gel synthesized coatings were found to be purely hydroxyapatite from XRD with graded and interconnected pores all over the surface observable in TEM. The interconnected porous nature of ceramics are found to increase bioactivity by acting to up-regulate the process of osseointegration through enhanced nutrient transfer and induction of angiogenesis. From TEM studies and nano indentation studies, we have shown that pores were considered to be appropriate for nutrient supply without compromising the strength of sample while in contact with physiological fluid. After SBF immersion test, porous surface was found to be useful for nucleation of apatite crystals, hence increasing the feasibility and bioactivity of sample. However, our quasi-dynamic study showed less crystallization but had significant formation of apatite layer. Overall, the in vitro analyses show that HAp coated e-glass leads to significant improvement of implant properties in terms of biocompatibility, cell viability and proliferation, osteoinductivity and osteoconductivity. HAp coating of e-glass can potentially be utilized in fabricating durable and strong bioactive non-metallic implants and tissue engineering scaffolds.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Durapatita/química , Vidrio/química , Nanoporos , Ingeniería de Tejidos , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/patología , Regeneración Ósea/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Materiales Biocompatibles Revestidos/farmacología , Humanos , Osteoblastos/citología , Osteoblastos/metabolismo , Propiedades de Superficie
3.
Mater Sci Eng C Mater Biol Appl ; 100: 104-116, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30948044

RESUMEN

Direct laser deposition (DLD) is one of the rapidly emerging laser-based additive manufacturing (LBAM) process. Laser Engineered Net Shaping (LENS) is one such DLD technique which was employed to fabricate one of the widely used Ti-6Al-4V implant material with enhanced surface-related properties compared to the wrought sample (commercially available). Wear and corrosion behavior of LENS fabricated Ti-6Al-4V (L-Ti64) was characterized using low-frequency reciprocatory wear tester and potentiostat. Sample hardness was determined using Vickers's microhardness test. Adhesion and morphology of Human mesenchymal stem cells (hMSCs) on the samples were examined using Scanning Electron Microscopy (SEM) and fluorescence microscope whereas the quantification of live cells was determined using MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay. Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) was used to determine the concentration of leached-out metal ions during wear test. All the above mentioned surface-related properties were compared to that of wrought Ti-6Al-4V (W-Ti64) to standardize the efficiency of LENS-fabricated materials (L-Ti64) when compared to its wrought counterpart. The results clearly indicated stable passive behavior of L-Ti64, which was evident from the lower corrosion rate and high passive range obtained. L-Ti64 exhibited improved hardness level than W-Ti64 by 8% which enhanced the wear resistance and also prevented the release of wear debris. However, in presence of FBS, coefficient of friction (COF) increased by about 21 and 33% for L-Ti64 and W-Ti64 respectively, which inturn accelerated the wear rate of both the samples. Low cytotoxicity and well spread morphology of human Mesenchymal Stem Cells (hMSC's) affirmed higher level of biocompatibility of both the samples. However, no significant differences in the cellular behaviors were observed.


Asunto(s)
Materiales Biocompatibles/química , Rayos Láser , Titanio/química , Aleaciones , Materiales Biocompatibles/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Dureza , Humanos , Microscopía Electrónica de Rastreo , Propiedades de Superficie , Titanio/farmacología
4.
Nanomedicine ; 18: 157-168, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30844575

RESUMEN

Two distinct surface topographies consisting of micro- and nano-surface were developed using laser texturing (LT) and anodization process respectively and their effect on the surface-related properties of Ti-6Al-4V fabricated using Laser Engineered Net Shaping (LENS) were determined. The topographies developed using laser texturing (25, 50 and 75% overlap) were examined using 3D profilometer, whereas, Field Emission Scanning Electron Microscopy (FE-SEM) was used to analyze Titania NanoTubes (TNT) formed using anodization. Though all the surface modified specimens exhibited hydrophilic behavior, least contact angle values were observed for the specimen surface modified with TNT. 25LT and 50LT specimens offered about 8 fold higher corrosion resistance than TNT specimens. All the surface modified samples exhibited non-toxicity to blood cells as well as to the mesenchymal stem cells (hMSCs) with a higher rate of proliferation and differentiation hMSCs observed on 75LT specimens and TNT specimen.


Asunto(s)
Rayos Láser , Ensayo de Materiales , Nanopartículas/química , Ortopedia/métodos , Titanio/química , Adulto , Fosfatasa Alcalina/metabolismo , Aleaciones , Espectroscopía Dieléctrica , Técnicas Electroquímicas , Dureza , Hemólisis/efectos de los fármacos , Humanos , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/enzimología , Células Madre Mesenquimatosas/ultraestructura , Nanopartículas/ultraestructura , Propiedades de Superficie , Titanio/farmacología
5.
J Adv Res ; 14: 97-111, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30109147

RESUMEN

Current popular cancer treatment options, include tumor surgery, chemotherapy, and hormonal treatment. These treatments are often associated with some inherent limitations. For instances, tumor surgery is not effective in mitigating metastases; the anticancer drugs used for chemotherapy can quickly spread throughout the body and is ineffective in killing metastatic cancer cells. Therefore, several drug delivery systems (DDS) have been developed to target tumor cells, and release active biomolecule at specific site to eliminate the side effects of anticancer drugs. However, common challenges of DDS used for cancer treatment, include poor site-specific accumulation, difficulties in entering the tumor microenvironment, poor metastases and treatment efficiency. In this context, non-invasive cancer treatment approaches, with or without DDS, involving the use of light, heat, magnetic field, electrical field and ultrasound appears to be very attractive. These approaches can potentially improve treatment efficiency, reduce recovery time, eliminate infections and scar formation. In this review we focus on the effects of magnetic fields and ultrasound on cancer cells and their application for cancer treatment in the presence of drugs or DDS.

6.
ACS Omega ; 3(5): 5459-5469, 2018 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-30023921

RESUMEN

Nowadays, tumor hypoxia has become a more predominant problem for diagnosis as well as treatment of cancer due to difficulties in delivering chemotherapeutic drugs and their carriers to these regions with reduced vasculature and oxygen supply. In such cases, external physical stimulus-mediated drug delivery, such as ultrasound and magnetic fields, would be effective. In this work, the effect of simultaneous exposure of low-intensity pulsed ultrasound and static magnetic field on colon (HCT116) and hepatocellular (HepG2) carcinoma cell inhibition was assessed in vitro. The treatment, in the presence of anticancer drug, with and without magnetic carrier, significantly increased the reactive oxygen species production and hyperpolarized the cancer cells. As a result, a significant increase in cell inhibition, up to 86%, was observed compared to 50% inhibition with bare anticancer drug. The treatment appears to have relatively more effect on HepG2 cells during the initial 24 h than on HCT116 cells. The proposed treatment was also found to reduce cancer cell necrosis and did not show any inhibitory effect on healthy cells (MC3T3). Our in vitro results suggest that this approach has strong application potential to treat cancer at lower drug dosage to achieve similar inhibition and can reduce health risks associated with drugs.

7.
Sci Rep ; 6: 32964, 2016 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-27604654

RESUMEN

Effects of strontium and lithium ion doping on the biological properties of bioactive glass (BAG) porous scaffolds have been checked in vitro and in vivo. BAG scaffolds were prepared by conventional glass melting route and subsequently, scaffolds were produced by evaporation of fugitive pore formers. After thorough physico-chemical and in vitro cell characterization, scaffolds were used for pre-clinical study. Soft and hard tissue formation in a rabbit femoral defect model after 2 and 4 months, were assessed using different tools. Histological observations showed excellent osseous tissue formation in Sr and Li + Sr scaffolds and moderate bone regeneration in Li scaffolds. Fluorochrome labeling studies showed wide regions of new bone formation in Sr and Li + Sr doped samples as compared to Li doped samples. SEM revealed abundant collagenous network and minimal or no interfacial gap between bone and implant in Sr and Li + Sr doped samples compared to Li doped samples. Micro CT of Li + Sr samples showed highest degree of peripheral cancellous tissue formation on periphery and cortical tissues inside implanted samples and vascularity among four compositions. Our findings suggest that addition of Sr and/or Li alters physico-chemical properties of BAG and promotes early stage in vivo osseointegration and bone remodeling that may offer new insight in bone tissue engineering.


Asunto(s)
Materiales Biocompatibles/química , Vidrio/química , Andamios del Tejido/química , Animales , Regeneración Ósea , Fracturas del Fémur/terapia , Colorantes Fluorescentes , Curación de Fractura , Litio/química , Ensayo de Materiales , Ratones , Microscopía Electrónica de Rastreo , Células 3T3 NIH , Porosidad , Conejos , Estroncio/química , Microtomografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...