Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PNAS Nexus ; 3(2): pgae008, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38390215

RESUMEN

Linking individual and stand-level dynamics during forest development reveals a scaling relationship between mean tree size and tree density in forest stands, which integrates forest structure and function. However, the nature of this so-called scaling law and its variation across broad spatial scales remain unquantified, and its linkage with forest demographic processes and carbon dynamics remains elusive. In this study, we develop a theoretical framework and compile a broad-scale dataset of long-term sample forest stands (n = 1,433) from largely undisturbed forests to examine the association of temporal mean tree size vs. density scaling trajectories (slopes) with biomass accumulation rates and the sensitivity of scaling slopes to environmental and demographic drivers. The results empirically demonstrate a large variation of scaling slopes, ranging from -4 to -0.2, across forest stands in tropical, temperate, and boreal forest biomes. Steeper scaling slopes are associated with higher rates of biomass accumulation, resulting from a lower offset of forest growth by biomass loss from mortality. In North America, scaling slopes are positively correlated with forest stand age and rainfall seasonality, thus suggesting a higher rate of biomass accumulation in younger forests with lower rainfall seasonality. These results demonstrate the strong association of the transient mean tree size vs. density scaling trajectories with forest demography and biomass accumulation rates, thus highlighting the potential of leveraging forest structure properties to predict forest demography, carbon fluxes, and dynamics at broad spatial scales.

2.
Nat Commun ; 13(1): 5626, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-36163194

RESUMEN

Warming of northern high latitude regions (NHL, > 50 °N) has increased both photosynthesis and respiration which results in considerable uncertainty regarding the net carbon dioxide (CO2) balance of NHL ecosystems. Using estimates constrained from atmospheric observations from 1980 to 2017, we find that the increasing trends of net CO2 uptake in the early-growing season are of similar magnitude across the tree cover gradient in the NHL. However, the trend of respiratory CO2 loss during late-growing season increases significantly with increasing tree cover, offsetting a larger fraction of photosynthetic CO2 uptake, and thus resulting in a slower rate of increasing annual net CO2 uptake in areas with higher tree cover, especially in central and southern boreal forest regions. The magnitude of this seasonal compensation effect explains the difference in net CO2 uptake trends along the NHL vegetation- permafrost gradient. Such seasonal compensation dynamics are not captured by dynamic global vegetation models, which simulate weaker respiration control on carbon exchange during the late-growing season, and thus calls into question projections of increasing net CO2 uptake as high latitude ecosystems respond to warming climate conditions.


Asunto(s)
Dióxido de Carbono , Hielos Perennes , Ciclo del Carbono , Ecosistema , Estaciones del Año
3.
Glob Chang Biol ; 28(20): 6102-6113, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35833875

RESUMEN

Elucidating the response mechanism of soil respiration (Rs) to silvicultural practices is pivotal to evaluating the effects of management practices on soil carbon cycling in planted forest ecosystems. However, as common management practices, how thinning, understory plant removal, and their interactions affect Rs and its autotrophic and heterotrophic components (Ra and Rh) remains unclear. Therefore, we investigated Rs, Ra and Rh by the trenching method from 2011 to 2015 in a Pinus tabuliformis plantation in northern China, subjecting to four treatments (intact control plots [CK], thinning [T], understory removal [UR], and thinning with understory removal [TUR]). Mean annual Rs was significantly increased by thinning (by 15.3%), whereas decreased by UR (by 17.4%), compared with CK. These variations in Rs were mainly attributed to changes in Ra. The increments of Ra were caused by the enhanced growth of fine root biomass after thinning. However, UR led to lower Ra compared with CK (p < .05), indicating that understory growth is inadequate to compensate for the decreased respiring root biomass induced by understory removal. Rs was unchanged between TUR and the intact control plot due to the opposite effects of thinning and UR on the Ra. Changes in Rh exhibited no significant differences among the treatments, partly because of the stable microbial biomass carbon (MBC) and forest floor mass (litter and fine woody debris). No interaction effect between thinning and understory removal was detected on Rs, Ra, and Rh. The lowest temperature sensitivity (Q10 ) value of Ra was found in CK. This study highlights the necessity of incorporating understory plant effects on soil CO2 efflux in assessing forest management practices on soil carbon cycling.


Asunto(s)
Suelo , Árboles , Carbono/análisis , China , Ecosistema , Bosques , Plantas , Respiración
4.
Nat Commun ; 13(1): 2094, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35440564

RESUMEN

Considerable uncertainty and debate exist in projecting the future capacity of forests to sequester atmospheric CO2. Here we estimate spatially explicit patterns of biomass loss by tree mortality (LOSS) from largely unmanaged forest plots to constrain projected (2015-2099) net primary productivity (NPP), heterotrophic respiration (HR) and net carbon sink in six dynamic global vegetation models (DGVMs) across continents. This approach relies on a strong relationship among LOSS, NPP, and HR at continental or biome scales. The DGVMs overestimated historical LOSS, particularly in tropical regions and eastern North America by as much as 5 Mg ha-1 y-1. The modeled spread of DGVM-projected NPP and HR uncertainties was substantially reduced in tropical regions after incorporating the field-based mortality constraint. The observation-constrained models show a decrease in the tropical forest carbon sink by the end of the century, particularly across South America (from 2 to 1.4 PgC y-1), and an increase in the sink in North America (from 0.8 to 1.1 PgC y-1). These results highlight the feasibility of using forest demographic data to empirically constrain forest carbon sink projections and the potential overestimation of projected tropical forest carbon sinks.


Asunto(s)
Secuestro de Carbono , Ecosistema , Biomasa , Carbono , América del Sur , Incertidumbre
5.
Natl Sci Rev ; 8(2): nwaa145, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34691569

RESUMEN

Resolving regional carbon budgets is critical for informing land-based mitigation policy. For nine regions covering nearly the whole globe, we collected inventory estimates of carbon-stock changes complemented by satellite estimates of biomass changes where inventory data are missing. The net land-atmospheric carbon exchange (NEE) was calculated by taking the sum of the carbon-stock change and lateral carbon fluxes from crop and wood trade, and riverine-carbon export to the ocean. Summing up NEE from all regions, we obtained a global 'bottom-up' NEE for net land anthropogenic CO2 uptake of -2.2 ± 0.6 PgC yr-1 consistent with the independent top-down NEE from the global atmospheric carbon budget during 2000-2009. This estimate is so far the most comprehensive global bottom-up carbon budget accounting, which set up an important milestone for global carbon-cycle studies. By decomposing NEE into component fluxes, we found that global soil heterotrophic respiration amounts to a source of CO2 of 39 PgC yr-1 with an interquartile of 33-46 PgC yr-1-a much smaller portion of net primary productivity than previously reported.

6.
Carbon Balance Manag ; 16(1): 15, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33973052

RESUMEN

BACKGROUND: The climate mitigation target of limiting the temperature increase below 2 °C above the pre-industrial levels requires the efforts from all countries. Tracking the trajectory of the land carbon sink efficiency is thus crucial to evaluate the nationally determined contributions (NDCs). Here, we define the instantaneous land sink efficiency as the ratio of natural land carbon sinks to emissions from fossil fuel and land-use and land-cover change with a value of 1 indicating carbon neutrality to track its temporal dynamics in the past decades. RESULTS: Land sink efficiency has been decreasing during 1957-1990 because of the increased emissions from fossil fuel. After the effect of the Mt. Pinatubo eruption diminished (after 1994), the land sink efficiency firstly increased before 2009 and then began to decrease again after 2009. This reversal around 2009 is mostly attributed to changes in land sinks in tropical regions in response to climate variations. CONCLUSIONS: The decreasing trend of land sink efficiency in recent years reveals greater challenges in climate change mitigation, and that climate impacts on land carbon sinks must be accurately quantified to assess the effectiveness of regional scale climate mitigation policies.

7.
Front Ecol Environ ; 19(1): 57-65, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35874182

RESUMEN

Understanding carbon (C) dynamics from ecosystem to global scales remains a challenge. Although expansion of global carbon dioxide (CO2) observatories makes it possible to estimate C-cycle processes from ecosystem to global scales, these estimates do not necessarily agree. At the continental US scale, only 5% of C fixed through photosynthesis remains as net ecosystem exchange (NEE), but ecosystem measurements indicate that only 2% of fixed C remains in grasslands, whereas as much as 30% remains in needleleaf forests. The wet and warm Southeast has the highest gross primary productivity and the relatively wet and cool Midwest has the highest NEE, indicating important spatial mismatches. Newly available satellite and atmospheric data can be combined in innovative ways to identify potential C loss pathways to reconcile these spatial mismatches. Independent datasets compiled from terrestrial and aquatic environments can now be combined to advance C-cycle science across the land-water interface.

8.
Glob Chang Biol ; 26(2): 682-696, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31596019

RESUMEN

Arctic and boreal ecosystems play an important role in the global carbon (C) budget, and whether they act as a future net C sink or source depends on climate and environmental change. Here, we used complementary in situ measurements, model simulations, and satellite observations to investigate the net carbon dioxide (CO2 ) seasonal cycle and its climatic and environmental controls across Alaska and northwestern Canada during the anomalously warm winter to spring conditions of 2015 and 2016 (relative to 2010-2014). In the warm spring, we found that photosynthesis was enhanced more than respiration, leading to greater CO2 uptake. However, photosynthetic enhancement from spring warming was partially offset by greater ecosystem respiration during the preceding anomalously warm winter, resulting in nearly neutral effects on the annual net CO2 balance. Eddy covariance CO2 flux measurements showed that air temperature has a primary influence on net CO2 exchange in winter and spring, while soil moisture has a primary control on net CO2 exchange in the fall. The net CO2 exchange was generally more moisture limited in the boreal region than in the Arctic tundra. Our analysis indicates complex seasonal interactions of underlying C cycle processes in response to changing climate and hydrology that may not manifest in changes in net annual CO2 exchange. Therefore, a better understanding of the seasonal response of C cycle processes may provide important insights for predicting future carbon-climate feedbacks and their consequences on atmospheric CO2 dynamics in the northern high latitudes.


Asunto(s)
Ecosistema , Fotosíntesis , Alaska , Regiones Árticas , Canadá , Ciclo del Carbono , Dióxido de Carbono , Cambio Climático , Estaciones del Año
9.
Nat Commun ; 10(1): 214, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30644402

RESUMEN

The biophysical feedbacks of forest fire on Earth's surface radiative budget remain uncertain at the global scale. Using satellite observations, we show that fire-induced forest loss accounts for about 15% of global forest loss, mostly in northern high latitudes. Forest fire increases surface temperature by 0.15 K (0.12 to 0.19 K) one year following fire in burned area globally. In high-latitudes, the initial positive climate-fire feedback was mainly attributed to reduced evapotranspiration and sustained for approximately 5 years. Over longer-term (> 5 years), increases in albedo dominated the surface radiative budget resulting in a net cooling effect. In tropical regions, fire had a long-term weaker warming effect mainly due to reduced evaporative cooling. Globally, biophysical feedbacks of fire-induced surface warming one year after fire are equivalent to 62% of warming due to annual fire-related CO2 emissions. Our results suggest that changes in the severity and/or frequency of fire disturbance may have strong impacts on Earth's surface radiative budget and climate, especially at high latitudes.

10.
Data Brief ; 20: 558-561, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30197912

RESUMEN

This article contains measurements of raw radial growth, distance to pith, and calculated basal area increments (BAI) from 444 5-mm increment cores (237 trees) collected in July 2016 from the Beaverhead-Deerlodge National Forest, MT. These data were used for the study presented in "Mountain pine beetle attack faster growing lodgepole pine at low elevations in western Montana, USA" [1]. Plot locations where increment cores were taken as well as code to calculate BAI are also included. Cores were collected from lodgepole pine (Pinus contorta) trees that were killed during a recent bark beetle outbreak (220 cores; 117 trees) as well as trees that survived the outbreak (210 cores; 113 trees) in twelve stands spanning north and south aspects and three elevational bands along a 600-m gradient. 14 additional cores were collected from 7 strip-attacked trees. Increment cores were prepared and measured using standard dendrochronological techniques, "An Introduction to Tree-Ring Dating" [2]. Master chronologies for each aspect-elevation combination were created using approximately ten cores from surviving trees at each location. Cores were cross-dated, then scanned at 2400 dpi. Annual ring widths were measured using CooRecorder 7.7, "Cybis Electronic, CDendro and CooRecorder V.7.7" [3], and final chronologies were quantitatively validated in COFECHA, "Computer-assisted quality control in tree-ring dating and measurement, Tree-Ring Society" [4].

11.
Nat Commun ; 9(1): 3596, 2018 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-30185789

RESUMEN

Understanding the sensitivity of ecosystem production and respiration to climate change is critical for predicting terrestrial carbon dynamics. Here we show that the primary control on the inter-annual variability of net ecosystem carbon exchange switches from production to respiration at a precipitation threshold between 750 and 950 mm yr-1 in the contiguous United States. This precipitation threshold is evident across multiple datasets and scales of observation indicating that it is a robust result and provides a new scaling relationship between climate and carbon dynamics. However, this empirical precipitation threshold is not captured by dynamic global vegetation models, which tend to overestimate the sensitivity of production and underestimate the sensitivity of respiration to water availability in more mesic regions. Our results suggest that the short-term carbon balance of ecosystems may be more sensitive to respiration losses than previously thought and that model simulations may underestimate the positive carbon-climate feedbacks associated with respiration.

12.
Glob Chang Biol ; 24(9): 3922-3937, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29658158

RESUMEN

Forests sequester large amounts of carbon annually and are integral in buffering against effects of global change. Increasing atmospheric CO2 may enhance photosynthesis and/or decrease stomatal conductance (gs ) thereby enhancing intrinsic water-use efficiency (iWUE), having potential indirect and direct benefits to tree growth. While increasing iWUE has been observed in most trees globally, enhanced growth is not ubiquitous, possibly due to concurrent climatic constraints on growth. To investigate our incomplete understanding of interactions between climate and CO2 and their impacts on tree physiology and growth, we used an environmental gradient approach. We combined dendrochronology with carbon isotope analysis (δ13 C) to assess the covariation of basal area increment (BAI) and iWUE over time in lodgepole pine. Trees were sampled at 18 sites spanning two climatically distinct elevation transects on the lee and windward sides of the Continental Divide, encompassing the majority of lodgepole pine's northern Rocky Mountain elevational range. We analyzed BAI and iWUE from 1950 to 2015, and explored correlations with monthly climate variables. As expected, iWUE increased at all sites. However, concurrent growth trends depended on site climatic water deficit (CWD). Significant growth increases occurred only at the driest sites, where increases in iWUE were strongest, while growth decreases were greatest at sites where CWD has been historically lowest. Late summer drought of the previous year negatively affected growth across sites. These results suggest that increasing iWUE, if strong enough, may indirectly benefit growth at drier sites by effectively extending the growing season via reductions in gs . Strong growth decreases at high elevation windward sites may reflect increasing water stress as a result of decreasing snowpack, which was not offset by greater iWUE. Our results imply that increasing iWUE driven by decreasing gs may benefit tree growth in limited scenarios, having implications for future carbon uptake potential of semiarid ecosystems.


Asunto(s)
Dióxido de Carbono/farmacología , Bosques , Pinus/efectos de los fármacos , Árboles/efectos de los fármacos , Carbono , Isótopos de Carbono/análisis , Secuestro de Carbono , Sequías , Fotosíntesis , Pinus/crecimiento & desarrollo , Pinus/fisiología , Árboles/crecimiento & desarrollo
13.
Sci Rep ; 8(1): 2870, 2018 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-29434266

RESUMEN

Plant traits are both responsive to local climate and strong predictors of primary productivity. We hypothesized that future climate change might promote a shift in global plant traits resulting in changes in Gross Primary Productivity (GPP). We characterized the relationship between key plant traits, namely Specific Leaf Area (SLA), height, and seed mass, and local climate and primary productivity. We found that by 2070, tropical and arid ecosystems will be more suitable for plants with relatively lower canopy height, SLA and seed mass, while far northern latitudes will favor woody and taller plants than at present. Using a network of tower eddy covariance CO2 flux measurements and the extrapolated plant trait maps, we estimated the global distribution of annual GPP under current and projected future plant community distribution. We predict that annual GPP in northern biomes (≥45 °N) will increase by 31% (+8.1 ± 0.5 Pg C), but this will be offset by a 17.9% GPP decline in the tropics (-11.8 ± 0.84 Pg C). These findings suggest that regional climate changes will affect plant trait distributions, which may in turn affect global productivity patterns.


Asunto(s)
Hojas de la Planta/fisiología , Algoritmos , Cambio Climático , Ecosistema , Fenómenos Fisiológicos de las Plantas
14.
Proc Natl Acad Sci U S A ; 113(46): 13104-13108, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27799533

RESUMEN

Conventional calculations of the global carbon budget infer the land sink as a residual between emissions, atmospheric accumulation, and the ocean sink. Thus, the land sink accumulates the errors from the other flux terms and bears the largest uncertainty. Here, we present a Bayesian fusion approach that combines multiple observations in different carbon reservoirs to optimize the land (B) and ocean (O) carbon sinks, land use change emissions (L), and indirectly fossil fuel emissions (F) from 1980 to 2014. Compared with the conventional approach, Bayesian optimization decreases the uncertainties in B by 41% and in O by 46%. The L uncertainty decreases by 47%, whereas F uncertainty is marginally improved through the knowledge of natural fluxes. Both ocean and net land uptake (B + L) rates have positive trends of 29 ± 8 and 37 ± 17 Tg C⋅y-2 since 1980, respectively. Our Bayesian fusion of multiple observations reduces uncertainties, thereby allowing us to isolate important variability in global carbon cycle processes.

15.
Proc Natl Acad Sci U S A ; 112(51): 15591-6, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26644555

RESUMEN

The terrestrial biosphere is currently a strong carbon (C) sink but may switch to a source in the 21st century as climate-driven losses exceed CO2-driven C gains, thereby accelerating global warming. Although it has long been recognized that tropical climate plays a critical role in regulating interannual climate variability, the causal link between changes in temperature and precipitation and terrestrial processes remains uncertain. Here, we combine atmospheric mass balance, remote sensing-modeled datasets of vegetation C uptake, and climate datasets to characterize the temporal variability of the terrestrial C sink and determine the dominant climate drivers of this variability. We show that the interannual variability of global land C sink has grown by 50-100% over the past 50 y. We further find that interannual land C sink variability is most strongly linked to tropical nighttime warming, likely through respiration. This apparent sensitivity of respiration to nighttime temperatures, which are projected to increase faster than global average temperatures, suggests that C stored in tropical forests may be vulnerable to future warming.


Asunto(s)
Secuestro de Carbono , Calentamiento Global , Clima Tropical , Ecosistema
16.
PLoS One ; 10(6): e0129723, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26114945

RESUMEN

We modified the stable isotope mixing model MixSIR to infer primary producer contributions to consumer diets based on their fatty acid composition. To parameterize the algorithm, we generated a 'consumer-resource library' of FA signatures of Daphnia fed different algal diets, using 34 feeding trials representing diverse phytoplankton lineages. This library corresponds to the resource or producer file in classic Bayesian mixing models such as MixSIR or SIAR. Because this library is based on the FA profiles of zooplankton consuming known diets, and not the FA profiles of algae directly, trophic modification of consumer lipids is directly accounted for. To test the model, we simulated hypothetical Daphnia comprised of 80% diatoms, 10% green algae, and 10% cryptophytes and compared the FA signatures of these known pseudo-mixtures to outputs generated by the mixing model. The algorithm inferred these simulated consumers were comprised of 82% (63-92%) [median (2.5th to 97.5th percentile credible interval)] diatoms, 11% (4-22%) green algae, and 6% (0-25%) cryptophytes. We used the same model with published phytoplankton stable isotope (SI) data for δ13C and δ15N to examine how a SI based approach resolved a similar scenario. With SI, the algorithm inferred that the simulated consumer assimilated 52% (4-91%) diatoms, 23% (1-78%) green algae, and 18% (1-73%) cyanobacteria. The accuracy and precision of SI based estimates was extremely sensitive to both resource and consumer uncertainty, as well as the trophic fractionation assumption. These results indicate that when using only two tracers with substantial uncertainty for the putative resources, as is often the case in this class of analyses, the underdetermined constraint in consumer-resource SI analyses may be intractable. The FA based approach alleviated the underdetermined constraint because many more FA biomarkers were utilized (n < 20), different primary producers (e.g., diatoms, green algae, and cryptophytes) have very characteristic FA compositions, and the FA profiles of many aquatic primary consumers are strongly influenced by their diets.


Asunto(s)
Teorema de Bayes , Dieta , Ácidos Grasos/química , Cadena Alimentaria , Animales
17.
Nature ; 427(6969): 69-72, 2004 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-14702086

RESUMEN

Determining the factors that control food web interactions is a key issue in ecology. The empirical relationship between nutrient loading (total phosphorus) and phytoplankton standing stock (chlorophyll a) in lakes was described about 30 years ago and is central for managing surface water quality. The efficiency with which biomass and energy are transferred through the food web and sustain the production of higher trophic levels (such as fish) declines with nutrient loading and system productivity, but the underlying mechanisms are poorly understood. Here we show that in seston (fine particles in water) during summer, specific omega3-polyunsaturated fatty acids (omega3-PUFAs), which are important for zooplankton, are significantly correlated to the trophic status of the lake. The omega3-PUFAs octadecatetraenoic acid, eicosapentaenoic acid (EPA) and docosahexaenoic acid, but not alpha-linolenic acid, decrease on a double-logarithmic scale with increasing total phosphorus. By combining the empirical relationship between EPA-to-carbon content and total phosphorus with functional models relating EPA-to-carbon content to the growth and egg production of daphnids, we predict secondary production for this key consumer. Thus, the decreasing efficiency in energy transfer with increasing lake productivity can be explained by differences in omega3-PUFA-associated food quality at the plant-animal interface.


Asunto(s)
Ácidos Grasos Insaturados/análisis , Cadena Alimentaria , Agua Dulce/química , Zooplancton/metabolismo , Animales , Biomasa , Carbono/metabolismo , Clorofila/metabolismo , Clorofila A , Daphnia/crecimiento & desarrollo , Daphnia/fisiología , Alimentos , Óvulo/fisiología , Tamaño de la Partícula , Fósforo/metabolismo , Fitoplancton/metabolismo , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...