Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioorg Med Chem Lett ; 101: 129657, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360419

RESUMEN

Herein, we report the modular synthesis and evaluation of a prostate-specific membrane antigen (PSMA) targeted small molecule drug conjugate (SMDC) carrying the chemotherapeutic agent, SN38. Due to the fluorogenic properties of SN38, payload release kinetics from the platform was observed in buffers representing the pH conditions of systemic circulation and cellular internalization. It was found that this platform is stable with minimal payload release at physiological pH with most rapid payload release observed at pH values representing the endosome complex. We confirmed selective payload release and chemotherapeutic efficacy for PSMA(+) prostate cancer cells over PSMA(-) cells. These results demonstrate that chemotherapeutic agents with limited solubility can be conjugated to a water-soluble targeting and linker platform without attenuating efficacy.


Asunto(s)
Glutamato Carboxipeptidasa II , Neoplasias de la Próstata , Masculino , Humanos , Línea Celular Tumoral , Glutamato Carboxipeptidasa II/química , Antígenos de Superficie/química , Neoplasias de la Próstata/tratamiento farmacológico
2.
Science ; 381(6659): 754-760, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37590357

RESUMEN

In nature, proteins that switch between two conformations in response to environmental stimuli structurally transduce biochemical information in a manner analogous to how transistors control information flow in computing devices. Designing proteins with two distinct but fully structured conformations is a challenge for protein design as it requires sculpting an energy landscape with two distinct minima. Here we describe the design of "hinge" proteins that populate one designed state in the absence of ligand and a second designed state in the presence of ligand. X-ray crystallography, electron microscopy, double electron-electron resonance spectroscopy, and binding measurements demonstrate that despite the significant structural differences the two states are designed with atomic level accuracy and that the conformational and binding equilibria are closely coupled.


Asunto(s)
Ingeniería de Proteínas , Cristalografía por Rayos X , Ligandos , Ingeniería de Proteínas/métodos , Conformación Proteica
3.
Chem Mater ; 34(21): 9736-9744, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36397834

RESUMEN

Despite remarkable advances in the assembly of highly structured coordination polymers and metal-organic frameworks, the rational design of such materials using more conformationally flexible organic ligands such as peptides remains challenging. In an effort to make the design of such materials fully programmable, we first developed a computational design method for generating metal-mediated 3D frameworks using rigid and symmetric peptide macrocycles with metal-coordinating sidechains. We solved the structures of six crystalline networks involving conformationally constrained 6 to 12 residue cyclic peptides with C2, C3, and S2 internal symmetry and three different types of metals (Zn2+, Co2+, or Cu2+) by single-crystal X-ray diffraction, which reveals how the peptide sequences, backbone symmetries, and metal coordination preferences drive the assembly of the resulting structures. In contrast to smaller ligands, these peptides associate through peptide-peptide interactions without full coordination of the metals, contrary to one of the assumptions underlying our computational design method. The cyclic peptides are the largest peptidic ligands reported to form crystalline coordination polymers with transition metals to date, and while more work is required to develop methods for fully programming their crystal structures, the combination of high chemical diversity with synthetic accessibility makes them attractive building blocks for engineering a broader set of new crystalline materials for use in applications such as sensing, asymmetric catalysis, and chiral separation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...