Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Clin Cancer Res ; 43(1): 214, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39090759

RESUMEN

BACKGROUND: Melanoma progression is based on a close interaction between cancer cells and immune cells in the tumor microenvironment (TME). Thus, a better understanding of the mechanisms controlling TME dynamics and composition will help improve the management of this dismal disease. Work from our and other groups has reported the requirement of an active Hedgehog-GLI (HH-GLI) signaling for melanoma growth and stemness. However, the role of the downstream GLI1 transcription factor in melanoma TME remains largely unexplored. METHODS: The immune-modulatory activity of GLI1 was evaluated in a syngeneic B16F10 melanoma mouse model assessing immune populations by flow cytometry. Murine polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) were differentiated from bone marrow cells and their immunosuppressive ability was assessed by inhibition of T cells. Conditioned media (CM) from GLI1-overexpressing mouse melanoma cells was used to culture PMN-MDSCs, and the effects of CM were evaluated by Transwell invasion assay and T cell inhibition. Cytokine array analysis, qPCR and chromatin immunoprecipitation were performed to explore the regulation of CX3CL1 expression by GLI1. Human monocyte-derived dendritic cells (moDCs) were cultured in CM from GLI1-silenced patient-derived melanoma cells to assess their activation and recruitment. Blocking antibodies anti-CX3CL1, anti-CCL7 and anti-CXCL8 were used for in vitro functional assays. RESULTS: Melanoma cell-intrinsic activation of GLI1 promotes changes in the infiltration of immune cells, leading to accumulation of immunosuppressive PMN-MDSCs and regulatory T cells, and to decreased infiltration of dendric cells (DCs), CD8 + and CD4 + T cells in the TME. In addition, we show that ectopic expression of GLI1 in melanoma cells enables PMN-MDSC expansion and recruitment, and increases their ability to inhibit T cells. The chemokine CX3CL1, a direct transcriptional target of GLI1, contributes to PMN-MDSC expansion and recruitment. Finally, silencing of GLI1 in patient-derived melanoma cells promotes the activation of human monocyte-derived dendritic cells (moDCs), increasing cytoskeleton remodeling and invasion ability. This phenotype is partially prevented by blocking the chemokine CCL7, but not CXCL8. CONCLUSION: Our findings highlight the relevance of tumor-derived GLI1 in promoting an immune-suppressive TME, which allows melanoma cells to evade the immune system, and pave the way for the design of new combination treatments targeting GLI1.


Asunto(s)
Melanoma , Células Supresoras de Origen Mieloide , Microambiente Tumoral , Proteína con Dedos de Zinc GLI1 , Animales , Proteína con Dedos de Zinc GLI1/metabolismo , Proteína con Dedos de Zinc GLI1/genética , Ratones , Humanos , Células Supresoras de Origen Mieloide/metabolismo , Células Supresoras de Origen Mieloide/inmunología , Melanoma/patología , Melanoma/metabolismo , Melanoma/inmunología , Melanoma/genética , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Melanoma Experimental/metabolismo , Línea Celular Tumoral , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Ratones Endogámicos C57BL
2.
Front Cell Neurosci ; 18: 1433309, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39049826

RESUMEN

Introduction: Neuroinflammation is a hallmark of multiple neurodegenerative diseases, shared by all pathological processes which primarily impact on neurons, including Central Nervous System (CNS) injuries. In reactive CNS, activated glia releases extracellular vesicles (EVs), nanosized membranous particles known to play a key role in intercellular communication. EVs mediate neuroinflammatory responses and might exacerbate tissue deterioration, ultimately influencing neurodegenerative disease progression. Methods: We treated spinal cord organotypic slices with LPS, a ligand extensively used to induce sEVs release, to mimic mild inflammatory conditions. We combine atomic force microscopy (AFM), nanoparticle tracking (NTA) and western blot (WB) analysis to validate the isolation and characterisation of sEVs. We further use immunofluorescence and confocal microscopy with live calcium imaging by GCaMP6f reporter to compare glial reactivity to treatments with sEVs when isolated from resting and LPS treated organ slices. Results: In our study, we focus on CNS released small EVs (sEVs) and their impact on the biology of inflammatory environment. We address sEVs local signalling within the CNS tissue, in particular their involvement in inflammation spreading mechanism(s). sEVs are harvested from mouse organotypic spinal cord cultures, an in vitro model which features 3D complexity and retains spinal cord resident cells. By confocal microscopy and live calcium imaging we monitor glial responses in naïve spinal slices when exposed to sEVs isolated from resting and LPS treated organ slices. Discussion: We show that sEVs, only when released during LPS neuroinflammation, recruit naïve astrocytes in the neuroinflammation cycle and we propose that such recruitment be mediated by EVs hemichannel (HC) permeability.

3.
Sci Rep ; 14(1): 730, 2024 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-38184708

RESUMEN

Extracellular vesicles (EVs) are lipid-bilayered particles, containing various biomolecules, including nucleic acids, lipids, and proteins, released by cells from all the domains of life and performing multiple communication functions. Evidence suggests that the interaction between host immune cells and fungal EVs induces modulation of the immune system. Most of the studies on fungal EVs have been conducted in the context of fungal infections; therefore, there is a knowledge gap in what concerns the production of EVs by yeasts in other contexts rather than infection and that may affect human health. In this work, we characterized EVs obtained by Saccharomyces cerevisiae and Pichia fermentans strains isolated from a fermented milk product with probiotic properties. The immunomodulation abilities of EVs produced by these strains have been studied in vitro through immune assays after internalization from human monocyte-derived dendritic cells. Results showed a significant reduction in antigen presentation activity of dendritic cells treated with the fermented milk EVs. The small RNA fraction of EVs contained mainly yeast mRNA sequences, with a few molecular functions enriched in strains of two different species isolated from the fermented milk. Our results suggest that one of the mechanisms behind the anti-inflammatory properties of probiotic foods could be mediated by the interactions of human immune cells with yeast EVs.


Asunto(s)
Productos Lácteos Cultivados , Vesículas Extracelulares , Levadura Seca , Humanos , Saccharomyces cerevisiae , Bebidas Fermentadas
4.
Mol Brain ; 17(1): 4, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38263055

RESUMEN

The central nervous system (CNS) is finely protected by the blood-brain barrier (BBB). Immune soluble factors such as cytokines (CKs) are normally produced in the CNS, contributing to physiological immunosurveillance and homeostatic synaptic scaling. CKs are peptide, pleiotropic molecules involved in a broad range of cellular functions, with a pivotal role in resolving the inflammation and promoting tissue healing. However, pro-inflammatory CKs can exert a detrimental effect in pathological conditions, spreading the damage. In the inflamed CNS, CKs recruit immune cells, stimulate the local production of other inflammatory mediators, and promote synaptic dysfunction. Our understanding of neuroinflammation in humans owes much to the study of multiple sclerosis (MS), the most common autoimmune and demyelinating disease, in which autoreactive T cells migrate from the periphery to the CNS after the encounter with a still unknown antigen. CNS-infiltrating T cells produce pro-inflammatory CKs that aggravate local demyelination and neurodegeneration. This review aims to recapitulate the state of the art about CKs role in the healthy and inflamed CNS, with focus on recent advances bridging the study of adaptive immune system and neurophysiology.


Asunto(s)
Esclerosis Múltiple , Humanos , Citocinas , Enfermedades Neuroinflamatorias , Encéfalo , Sistema Nervioso Central
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA