Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(20)2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36293256

RESUMEN

Male germ cells experience a drastic chromatin remodeling through the nucleo-histone to nucleo-protamine (NH-NP) transition necessary for proper sperm functionality. Post-translational modifications (PTMs) of H4 Lys5, such as acetylation (H4K5ac), play a crucial role in epigenetic control of nucleosome disassembly facilitating protamine incorporation into paternal DNA. It has been shown that butyrylation on the same residue (H4K5bu) participates in temporal regulation of NH-NP transition in mice, delaying the bromodomain testis specific protein (BRDT)-dependent nucleosome disassembly and potentially marking retained nucleosomes. However, no information was available so far on this modification in human sperm. Here, we report a dual behavior of H4K5bu and H4K5ac in human normal spermatogenesis, suggesting a specific role of H4K5bu during spermatid elongation, coexisting with H4K5ac although with different starting points. This pattern is stable under different testicular pathologies, suggesting a highly conserved function of these modifications. Despite a drastic decrease of both PTMs in condensed spermatids, they are retained in ejaculated sperm, with 30% of non-colocalizing nucleosome clusters, which could reflect differential paternal genome retention. Whereas no apparent effect of these PTMs was observed associated with sperm quality, their presence in mature sperm could entail a potential role in the zygote.


Asunto(s)
Cromatina , Nucleosomas , Humanos , Masculino , Ratones , Animales , Cromatina/metabolismo , Acetilación , Nucleosomas/metabolismo , Histonas/metabolismo , Semen/metabolismo , Espermatogénesis/fisiología , Espermatozoides/metabolismo , Ensamble y Desensamble de Cromatina , Procesamiento Proteico-Postraduccional , Espermátides/metabolismo , Protaminas/metabolismo
2.
Hum Reprod ; 37(8): 1712-1726, 2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-35678707

RESUMEN

STUDY QUESTION: Is histone H4 acetylation (H4ac) altered in the seminiferous tubules of patients affected by testicular tumours? SUMMARY ANSWER: A considerable dysregulation of H4ac was detected in the cells of the seminiferous tubules adjacent to testicular tumours of different aetiology and prior to any treatment, while no comparable alterations were observed in patients with disrupted spermatogenesis. WHAT IS KNOWN ALREADY: Altered H4ac levels have been associated with a variety of testicular pathological conditions. However, no information has been available regarding potential alterations in the spermatogenic cells adjacent to the neoplasia in testicular tumour patients. STUDY DESIGN, SIZE, DURATION: A retrospective analysis using testicular sections from 33 men aged between 21 and 74 years old was performed. Three study groups were defined and subjected to double-blind evaluation: a control group with normal spermatogenesis (n = 6), patients with testicular tumours (n = 18) and patients with spermatogenic impairments (n = 8). One additional sample with normal spermatogenesis was used as a technical internal control in all evaluations. PARTICIPANTS/MATERIALS, SETTING, METHODS: Immunohistochemistry against H4ac and, when needed, Placental-like alkaline phosphatase and CD117, was performed on testicular sections. The H4ac H-score, based on the percentage of detection and signal intensity, was used as the scoring method for statistical analyses. Protein expression data from the Human Protein Atlas were used to compare the expression levels of predicted secreted proteins from testicular tumours with those present in the normal tissue. MAIN RESULTS AND THE ROLE OF CHANCE: We revealed, for the first time, a dramatic disruption of the spermatogenic H4ac pattern in unaffected seminiferous tubule cells from different testicular tumour patients prior to any antineoplastic treatment, as compared to controls (P < 0.05). Since no similar alterations were associated with spermatogenic impairments and the in silico analysis revealed proteins potentially secreted by the tumour to the testicular stroma, we propose a potential paracrine effect of the neoplasia as a mechanistic hypothesis for this dysregulation. LIMITATIONS, REASONS FOR CAUTION: Statistical analyses were not performed on the hypospermatogenesis and Leydig cell tumour groups due to limited availability of samples. WIDER IMPLICATIONS OF THE FINDINGS: To the best of our knowledge, this is the first report showing an epigenetic alteration in cells from active seminiferous tubules adjacent to tumour cells in testicular tumour patients. Our results suggest that, despite presenting spermatogenic activity, the global epigenetic dysregulation found in the testicular tumour patients could lead to molecular alterations of the male germ cells. Since testicular tumours are normally diagnosed in men at reproductive age, H4ac alterations might have an impact when these testicular tumour patients express a desire for fatherhood. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the European Union Marie Curie European Training Network actions and by grants to R.O. from the 'Ministerio de Economía y Competividad (Spain)' (fondos FEDER 'una manera de hacer Europa', PI13/00699, PI16/00346 and PI20/00936) and from EU-FP7-PEOPLE-2011-ITN289880. J.C. was supported by the Sara Borrell Postdoctoral Fellowship, Acción Estratégica en Salud, CD17/00109. J.C. is a Serra Húnter fellow (Universitat de Barcelona, Generalitat de Catalunya). F.B. has received grants from the Ministerio de Educación, Cultura y Deporte para la Formación de Profesorado Universitario (Spain) (FPU15/02306). A.d.l.I. is supported by a fellowship of the Ministerio de Economía, Industria y Competitividad (Spain) (PFIS, FI17/00224). M.J. is supported by the Government of Catalonia (Generalitat de Catalunya, pla estratègic de recerca i innovació en salut, PERIS 2016-2020, SLT002/16/00337). The authors have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER: N/A.


Asunto(s)
Histonas , Túbulos Seminíferos , Neoplasias Testiculares , Acetilación , Adulto , Anciano , Método Doble Ciego , Histonas/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Túbulos Seminíferos/fisiopatología , Espermatogénesis , Neoplasias Testiculares/patología , Testículo/metabolismo , Adulto Joven
3.
Reprod Biomed Online ; 40(5): 700-710, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32444165

RESUMEN

RESEARCH QUESTION: Do alterations of human sperm protein profile affect embryo quality? DESIGN: Sperm proteins from 27 infertile couples undergoing intracytoplasmic sperm injection (ICSI) were extracted and digested. The resulting peptides were labelled using tandem mass tags, separated by two-dimensional liquid chromatography, and identified and quantified using tandem mass spectrometry. Subsequently, sperm protein and peptide abundance were statistically analysed for correlation with ICSI-derived embryo quality in the subset of idiopathic infertile couples. Detected correlations were further assessed in the subset of infertile patients with a known factor. RESULTS: The abundance of 18 individual sperm proteins was found to correlate with embryo quality after ICSI. Of note, a high percentage of poor-quality ICSI-derived embryos was associated with alterations in several components of the eight-membered chaperonin-containing T-complex, which plays an important role in the folding of many essential proteins. Additionally, the abundance of sperm proteins with known functions in embryogenesis, such as RUBVL1, also correlated with early embryo quality (r = -0.547; P = 0.028). Some of the correlations found in this study were validated using either proteomic data from infertile patients with a known factor or data from similar published studies. Analysis at the peptide level revealed the association of some correlations with specific post-translational modifications or isoforms. CONCLUSIONS: Our results support the hypothesis that the sperm proteome plays a role in early embryogenesis. Moreover, several sperm proteins have emerged as potential biomarkers that could predict the outcome of in-vitro assisted reproductive technologies, leading to the possibility of improved diagnosis of couples with idiopathic infertility.


Asunto(s)
Desarrollo Embrionario/fisiología , Proteoma , Inyecciones de Esperma Intracitoplasmáticas , Espermatozoides/metabolismo , Adulto , Fragmentación del ADN , Transferencia de Embrión , Femenino , Fertilización In Vitro , Humanos , Masculino , Embarazo , Índice de Embarazo , Proteómica
4.
J Proteome Res ; 19(1): 221-237, 2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31703166

RESUMEN

Protamine 1 (P1) and protamine 2 (P2) family are extremely basic, sperm-specific proteins, packing 85-95% of the paternal DNA. P1 is synthesized as a mature form, whereas P2 components (HP2, HP3, and HP4) arise from the proteolysis of the precursor (pre-P2). Due to the particular protamine physical-chemical properties, their identification by standardized bottom-up mass spectrometry (MS) strategies is not straightforward. Therefore, the aim of this study was to identify the sperm protamine proteoforms profile, including their post-translational modifications, in normozoospermic individuals using two complementary strategies, a top-down MS approach and a proteinase-K-digestion-based bottom-up MS approach. By top-down MS, described and novel truncated P1 and pre-P2 proteoforms were identified. Intact P1, pre-P2, and P2 mature proteoforms and their phosphorylation pattern were also detected. Additionally, a +61 Da modification in different proteoforms was observed. By the bottom-up MS approach, phosphorylated residues for pre-P2, as well as the new P2 isoform 2, which is not annotated in the UniProtKB database, were revealed. Implementing these strategies in comparative studies of different infertile phenotypes, together with the evaluation of P1/P2 and pre-P2/P2 MS-derived ratios, would permit determining specific alterations in the protamine proteoforms and elucidate the role of phosphorylation/dephosphorylation dynamics in male fertility.


Asunto(s)
Espectrometría de Masas/métodos , Protaminas/análisis , Proteómica/métodos , Espermatozoides/química , Cromatografía Liquida/métodos , Humanos , Masculino , Fosforilación , Protaminas/metabolismo , Isoformas de Proteínas/análisis , Procesamiento Proteico-Postraduccional , Flujo de Trabajo
5.
Front Cell Dev Biol ; 7: 295, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31824947

RESUMEN

The male gamete is not completely mature after ejaculation and requires further events in the female genital tract to acquire fertilizing ability, including the processes of capacitation and acrosome reaction. In order to shed light on protein changes experienced by the sperm cell in preparation for fertilization, a comprehensive quantitative proteomic profiling based on isotopic peptide labeling and liquid chromatography followed by tandem mass spectrometry was performed on spermatozoa from three donors of proven fertility under three sequential conditions: purification with density gradient centrifugation, incubation with capacitation medium, and induction of acrosome reaction by exposure to the calcium ionophore A23187. After applying strict selection criteria for peptide quantification and for statistical analyses, 36 proteins with significant changes in their relative abundance within sperm protein extracts were detected. Moreover, the presence of peptide residues potentially harboring sites for post-translational modification was revealed, suggesting that protein modification may be an important mechanism in sperm maturation. In this regard, increased levels of proteins mainly involved in motility and signaling, both regulated by protein modifiers, were detected in sperm lysates following incubation with capacitation medium. In contrast, less abundant proteins in acrosome-reacted cell lysates did not contain potentially modifiable residues, suggesting the possibility that all those proteins might be relocated or released during the process. Protein-protein interaction analysis revealed a subset of proteins potentially involved in sperm maturation, including the proteins Erlin-2 (ERLIN2), Gamma-glutamyl hydrolase (GGH) and Transmembrane emp24 domain-containing protein 10 (TMED10). These results contribute to the current knowledge of the molecular basis of human fertilization. It should now be possible to further validate the potential role of the detected altered proteins as modulators of male infertility.

6.
Oncotarget ; 10(56): 5871-5887, 2019 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-31645906

RESUMEN

The vascular endothelial growth factor receptor 1 (VEGFR-1) family of receptors is preferentially expressed in endothelial cells, with the full-length and mostly the soluble (sVEGFR-1) isoforms being the most expressed ones. Surprisingly, cancer cells (MDA-MB-231) express, instead, alternative intracellular VEGFR-1 variants. We wondered if these variants, that are no longer dependent on ligands for activation, were expressed in a physiological context, specifically in spermatogenic cells, and whether their expression was maintained in spermatozoa and required for human fertility. By interrogating a human library of mature testis cDNA, we characterized two new truncated intracellular variants different from the ones previously described in cancer cells. The new isoforms were transcribed from alternative transcription start sites (aTSS) located respectively in intron-19 (i19VEGFR-1) and intron-28 (i28VEGFR-1) of the VEGFR-1 gene (GenBank accession numbers JF509744 and JF509745) and expressed in mature testis and spermatozoa. In this paper, we describe the characterization of these isoforms by RT-PCR, northern blot, and western blot, their preferential expression in human mature testis and spermatozoa, and the elements that punctuate their proximal promoters and suggest cues for their expression in spermatogenic cells. Mechanistically, we show that i19VEGFR-1 has a strong ability to phosphorylate and activate SRC proto-oncogene non-receptor tyrosine kinases and a significant bias toward a decrease in expression in patients considered infertile by WHO criteria.

7.
Mol Cell Proteomics ; 18(Suppl 1): S77-S90, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30518674

RESUMEN

Our aim was to define seminal plasma proteome signatures of infertile patients categorized according to their seminal parameters using TMT-LC-MS/MS. To that extent, quantitative proteomic data was analyzed following two complementary strategies: (1) the conventional approach based on standard statistical analyses of relative protein quantification values; and (2) a novel strategy focused on establishing stable-protein pairs. By conventional analyses, the abundance of some seminal plasma proteins was found to be positively correlated with sperm concentration. However, this correlation was not found for all the peptides within a specific protein, bringing to light the high heterogeneity existing in the seminal plasma proteome because of both the proteolytic fragments and/or the post-translational modifications. This issue was overcome by conducting the novel stable-protein pairs analysis proposed herein. A total of 182 correlations comprising 24 different proteins were identified in the normozoospermic-control population, whereas this proportion was drastically reduced in infertile patients with altered seminal parameters (18 in patients with reduced sperm motility, 0 in patients with low sperm concentration and 3 in patients with no sperm in the ejaculate). These results suggest the existence of multiple etiologies causing the same alteration in seminal parameters. Additionally, the repetition of the stable-protein pair analysis in the control group by adding the data from a single patient at a time enabled to identify alterations in the stable-protein pairs profile of individual patients with altered seminal parameters. These results suggest potential underlying pathogenic mechanisms in individual infertile patients, and might open up a window to its application in the personalized diagnostic of male infertility.


Asunto(s)
Infertilidad Masculina/metabolismo , Proteómica , Semen/metabolismo , Proteínas de Plasma Seminal/metabolismo , Genitales Masculinos/metabolismo , Genitales Masculinos/patología , Humanos , Masculino
8.
Protein Pept Lett ; 25(5): 424-433, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29651936

RESUMEN

BACKGROUND: Protamines are the most abundant sperm nuclear proteins and pack approximately the 92-98% of the mammalian sperm DNA. In mammals, two types of protamines have been described, the Protamine 1 (P1) and the Protamine 2 (P2) family. The deregulation of the relative P1/P2 ratio has been correlated to DNA damage, alterations in seminal parameters, and low success rate of assisted reproduction techniques. Additionally, the extraction and analysis of protamines have been important to understand the fundamental aspects of the sperm chromatin structure and function, protamine sequence conservation among species, and sperm chromatin alterations present in infertile males. However, protamines show a particular chemical nature due to its special amino acid sequence, extremely rich in arginine and cysteine residues. Because of these peculiar characteristics of protamines, their extraction and analysis is not as straightforward as the analysis of other chromatin-associated proteins, for which many detailed protocols are already available. CONCLUSION: A step-by-step protocol was needed to facilitate protamine analysis to researchers interested in their implementation. Therefore, in order to contribute to fulfill this need, here we provide a detailed protocol, which should be useful to research teams and laboratories interested in the protamine field. In addition, we also briefly review the different studies published so far on protamine alterations and male infertility.


Asunto(s)
Protaminas/química , Protaminas/aislamiento & purificación , Espermatozoides/química , Animales , Humanos , Masculino , Protaminas/metabolismo , Espermatozoides/metabolismo
9.
Asian J Androl ; 17(4): 601-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25926607

RESUMEN

The classical idea about the function of the mammalian sperm chromatin is that it serves to transmit a highly protected and transcriptionally inactive paternal genome, largely condensed by protamines, to the next generation. In addition, recent sperm chromatin genome-wide dissection studies indicate the presence of a differential distribution of the genes and repetitive sequences in the protamine-condensed and histone-condensed sperm chromatin domains, which could be potentially involved in regulatory roles after fertilization. Interestingly, recent proteomic studies have shown that sperm chromatin contains many additional proteins, in addition to the abundant histones and protamines, with specific modifications and chromatin affinity features which are also delivered to the oocyte. Both gene and protein signatures seem to be altered in infertile patients and, as such, are consistent with the potential involvement of the sperm chromatin landscape in early embryo development. This present work reviews the available information on the composition of the human sperm chromatin and its epigenetic potential, with a particular focus on recent results derived from high-throughput genomic and proteomic studies. As a complement, we provide experimental evidence for the detection of phosphorylations and acetylations in human protamine 1 using a mass spectrometry approach. The available data indicate that the sperm chromatin is much more complex than what it was previously thought, raising the possibility that it could also serve to transmit crucial paternal epigenetic information to the embryo.


Asunto(s)
Epigénesis Genética/genética , Infertilidad Masculina/genética , Proteómica , Cromatina Sexual/genética , Espermatozoides/ultraestructura , ADN/genética , Humanos , Infertilidad Masculina/patología , Masculino , Proteínas/genética , Proteínas/metabolismo
10.
Expert Rev Proteomics ; 12(3): 255-77, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25921224

RESUMEN

The recent application of mass spectrometry to the study of the sperm cell has led to an unprecedented capacity for identification of sperm proteins in a variety of species. Knowledge of the proteins that make up the sperm cell represents the first step towards understanding its normal function and the molecular anomalies associated with male infertility. The present review starts with an introduction of the sperm cell biology and is followed by the consideration of the methodological key aspects to be aware of during sample sourcing and preparation, including data interpretation. It then overviews the initiatives developed so far towards the completion of the sperm proteome, with a particular focus in human but with the inclusion of some comments on different model species. Finally, all studies performing differential proteomics in infertile patients are reviewed, pointing to future potential applications.


Asunto(s)
Medicina Clínica , Proteómica , Espermatozoides/metabolismo , Animales , Humanos , Infertilidad Masculina/metabolismo , Masculino , Espectrometría de Masas , Proteoma/metabolismo , Espermatozoides/citología
11.
RNA ; 21(6): 1085-95, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25904136

RESUMEN

At the end of mammalian sperm development, sperm cells expel most of their cytoplasm and dispose of the majority of their RNA. Yet, hundreds of RNA molecules remain in mature sperm. The biological significance of the vast majority of these molecules is unclear. To better understand the processes that generate sperm small RNAs and what roles they may have, we sequenced and characterized the small RNA content of sperm samples from two human fertile individuals. We detected 182 microRNAs, some of which are highly abundant. The most abundant microRNA in sperm is miR-1246 with predicted targets among sperm-specific genes. The most abundant class of small noncoding RNAs in sperm are PIWI-interacting RNAs (piRNAs). Surprisingly, we found that human sperm cells contain piRNAs processed from pseudogenes. Clusters of piRNAs from human testes contain pseudogenes transcribed in the antisense strand and processed into small RNAs. Several human protein-coding genes contain antisense predicted targets of pseudogene-derived piRNAs in the male germline and these piRNAs are still found in mature sperm. Our study provides the most extensive data set and annotation of human sperm small RNAs to date and is a resource for further functional studies on the roles of sperm small RNAs. In addition, we propose that some of the pseudogene-derived human piRNAs may regulate expression of their parent gene in the male germline.


Asunto(s)
MicroARNs/genética , Seudogenes , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Espermatozoides/metabolismo , Humanos , Elementos de Nucleótido Esparcido Largo , Masculino , Filogenia , Regiones Promotoras Genéticas , Proteínas/metabolismo , Análisis de Secuencia de ARN/métodos , Testículo/metabolismo
12.
J Proteome Res ; 13(12): 5670-84, 2014 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-25250979

RESUMEN

Mammalian sperm motility is a prerequisite for in vivo fertilization, and alterations in this parameter are commonly observed in infertile males. However, we still do not have a complete understanding of the molecular mechanisms controlling it. The aim of this study was to identify proteins involved in human sperm motility deficiency by using TMT protein labeling and LC-MS/MS. Two complementary approaches were used: comparison between sperm samples differing in motility (asthenozoospermic versus normozoospermic) and comparison between sperm subpopulations of fractionated normozoospermic samples differing in motility (non-migrated versus migrated). LC-MS/MS resulted in the identification of 1157 and 887 proteins in the first and second approaches, respectively. Remarkably, similar proteomic alterations were detected in the two experiments, with 80 proteins differentially expressed in the two groups of samples and 93 differentially expressed in the two groups of subpopulations. The differential proteins were analyzed by GO, cellular pathways, and clustering analyses and resulted in the identification of core deregulated proteins and pathways associated with sperm motility dysfunction. These included proteins associated with energetic metabolism, protein folding/degradation, vesicle trafficking, and the cytoskeleton. Contrary to what is usually accepted, the outcomes support the hypothesis that several metabolic pathways (notably, mitochondrial-related ones) contribute toward regulating sperm motility.


Asunto(s)
Astenozoospermia/metabolismo , Proteoma/análisis , Proteómica/métodos , Motilidad Espermática , Espermatozoides/metabolismo , Cromatografía Liquida , Electroforesis en Gel de Poliacrilamida , Humanos , Masculino , Redes y Vías Metabólicas , Proteoma/metabolismo , Semen/citología , Semen/metabolismo , Espectrometría de Masas en Tándem
13.
Mol Hum Reprod ; 20(11): 1041-53, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25193639

RESUMEN

The mammalian spermatozoon has a unique chromatin structure where the majority of DNA is packaged by protamines, while a small fraction (∼8%) remains associated with nucleosomes. However, the chromatin affinity and repertoire of the additional proteins constituting the different sperm chromatin fractions have not yet been explored. To address this we have carried out a genomic and proteomic characterization of human sperm samples subjected to chromatin fractionation using either 0.65 M NaCl extraction followed by EcoRI/BamHI DNA restriction enzyme digestion, or micrococcal nuclease digestion. DNA fractions corresponding to the nucleosome-packaged DNA were sequenced, confirming an appropriate dissection of the sperm chromatin. In addition we detected and sequenced a subnucleosomal particle. Although both fractions were highly enriched at gene promoters, some sequences were found to be exclusively associated with one of those. The results of the proteomic analyses demonstrate that there are two distinct sets of sperm proteins which differ in chromatin affinity. Histone variants, transcription factors, chromatin-associated and modifying proteins involved in regulatory roles were identified as weakly attached to the sperm DNA, whereas proteins with structural roles were identified in the condensed fraction. Many factors, such as the histone lysine demethylase PHF8 identified for the first time in the human sperm cell in this study, were identified exclusively in soluble fraction. Our results provide additional support to the possibility that all of these factors may constitute additional layers of sperm epigenetic information or have structural or regulatory roles transmitted by the sperm cell to the oocyte at fertilization.


Asunto(s)
Cromatina/metabolismo , Espermatozoides/metabolismo , Cromatina/química , Epigénesis Genética , Genómica , Histona Demetilasas/análisis , Histona Demetilasas/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Masculino , Proteómica , Factores de Transcripción/análisis , Factores de Transcripción/metabolismo
14.
Hum Reprod ; 29(6): 1225-37, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24781426

RESUMEN

STUDY QUESTION: Are there quantitative alterations in the proteome of normozoospermic sperm samples that are able to complete IVF but whose female partner does not achieve pregnancy? SUMMARY ANSWER: Normozoospermic sperm samples with different IVF outcomes (pregnancy versus no pregnancy) differed in the levels of at least 66 proteins. WHAT IS KNOWN ALREADY: The analysis of the proteome of sperm samples with distinct fertilization capacity using low-throughput proteomic techniques resulted in the detection of a few differential proteins. Current high-throughput mass spectrometry approaches allow the identification and quantification of a substantially higher number of proteins. STUDY DESIGN, SIZE, DURATION: This was a case-control study including 31 men with normozoospermic sperm and their partners who underwent IVF with successful fertilization recruited between 2007 and 2008. PARTICIPANTS/MATERIALS, SETTING, METHODS: Normozoospermic sperm samples from 15 men whose female partners did not achieve pregnancy after IVF (no pregnancy) and 16 men from couples that did achieve pregnancy after IVF (pregnancy) were included in this study. To perform the differential proteomic experiments, 10 no pregnancy samples and 10 pregnancy samples were separately pooled and subsequently used for tandem mass tags (TMT) protein labelling, sodium dodecyl sulphate-polyacrylamide gel electrophoresis, liquid chromatography tandem mass spectrometry (LC-MS/MS) identification and peak intensity relative protein quantification. Bioinformatic analyses were performed using UniProt Knowledgebase, DAVID and Reactome. Individual samples (n = 5 no pregnancy samples; n = 6 pregnancy samples) and aliquots from the above TMT pools were used for western blotting. MAIN RESULTS AND THE ROLE OF CHANCE: By using TMT labelling and LC-MS/MS, we have detected 31 proteins present at lower abundance (ratio no pregnancy/pregnancy < 0.67) and 35 at higher abundance (ratio no pregnancy/pregnancy > 1.5) in the no pregnancy group. Bioinformatic analyses showed that the proteins with differing abundance are involved in chromatin assembly and lipoprotein metabolism (P values < 0.05). In addition, the differential abundance of one of the proteins (SRSF protein kinase 1) was further validated by western blotting using independent samples (P value < 0.01). LIMITATIONS, REASONS FOR CAUTION: For individual samples the amount of recovered sperm not used for IVF was low and in most of the cases insufficient for MS analysis, therefore pools of samples had to be used to this end. WIDER IMPLICATIONS OF THE FINDINGS: Alterations in the proteins involved in chromatin assembly and metabolism may result in epigenetic errors during spermatogenesis, leading to inaccurate sperm epigenetic signatures, which could ultimately prevent embryonic development. These sperm proteins may thus possibly have clinical relevance. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the Spanish Ministry of Economy and Competitiveness (Ministerio de Economia y Competividad; FEDER BFU 2009-07118 and PI13/00699) and Fundación Salud 2000 SERONO13-015. There are no competing interests to declare.


Asunto(s)
Epigénesis Genética , Fertilización In Vitro , Espermatozoides/metabolismo , Adulto , Femenino , Humanos , Masculino , Embarazo , Proteómica , Espectrometría de Masas en Tándem , Insuficiencia del Tratamiento
15.
Hum Reprod ; 27(5): 1431-8, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22353264

RESUMEN

BACKGROUND: Alterations in RNAs present in sperm have been identified using microarrays in teratozoospermic patients and in other types of infertile patients. However, so far, there have been no reports on using microarrays to determine the RNA content of sperm from asthenozoospermic patients. METHODS: We started the present project with the goal of characterizing the RNA abundance in the sperm cells of asthenozoospermic patients when compared with controls. To reach this objective, we initially selected four normal fertile donors and four asthenozoospermic infertile patients. Equal amounts of RNA were extracted from the sperm samples, subjected to different quality controls and hybridized to the Affymetrix U133 Plus version 2 arrays. RESULTS: Several transcripts were identified that were present in different abundance in patients compared with controls. Subsequently, we validated the differential expression of three of the detected transcripts (ANXA2, BRD2 and OAZ3), using real-time PCR in a larger set of samples. A positive correlation between the expression of these transcripts and progressive motility was observed. CONCLUSIONS: The sperm cells of asthenozoospermic patients contain an altered amount of some RNAs as detected using microarray analysis and subsequently validated using real-time PCR. These results open up the possibility to investigate the implication of these genes in the pathogenic mechanisms in asthenozoospermia and to consider their potential utility as infertility biomarkers.


Asunto(s)
Astenozoospermia/genética , ARN Mensajero/metabolismo , Adulto , Anexina A2/genética , Anexina A2/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Protaminas/genética , Protaminas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/química , Reacción en Cadena en Tiempo Real de la Polimerasa , Motilidad Espermática/genética , Factores de Transcripción
16.
Hum Fertil (Camb) ; 13(4): 263-7, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21117936

RESUMEN

Proteomics is the study of the proteins of cells or tissues. Sperm proteomics aims to identify the proteins that compose the sperm cell and the study of their function. Recent developments in mass spectrometry (MS) have markedly increased the throughput to identify and study sperm proteins. Catalogues of hundreds to thousands of spermatozoan proteins in human and in model species are becoming available setting up the basis for subsequent research, diagnostic applications and the development of specific treatments. A wide range of MS techniques are also rapidly becoming available for researchers. The present review summarises the different methodological options to study the sperm cell using MS and to provide a summary of some of the ongoing proteomic studies.


Asunto(s)
Proteómica/métodos , Espermatozoides/química , Animales , Humanos , Masculino , Espectrometría de Masas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...