Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
J Autoimmun ; 146: 103240, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38754238

RESUMEN

BACKGROUND: Giant cell arteritis (GCA) is an immune-mediated large-vessels vasculitis with complex etiology. Although the pathogenic mechanisms remain poorly understood, a central role for CD4+ T cells has been demonstrated. In this context, understanding the transcriptome dysregulation in GCA CD4+ T cells will yield new insights into its pathogenesis. METHODS: Transcriptome analysis was conducted on CD4+ T cells from 70 patients with GCA with different disease activity and treatment status (active patients before treatment and patients in remission with and without glucocorticoid treatment), and 28 healthy controls. The study also evaluated potential impacts of DNA methylation on gene expression alterations and assessed cross-talk with CD14+ monocytes. RESULTS: This study has uncovered a substantial number of genes and pathways potentially contributing to the pathogenicity of CD4+ T cells in GCA. Specifically, CD4+ T cells from GCA patients with active disease exhibited altered expression levels of genes involved in multiple immune-related processes, including various interleukins (IL) signaling pathways. Notably, IL-2, a decisive interleukin for regulatory T cells homeostasis, was among the most significant. Additionally, impaired apoptotic pathways appear crucial in GCA development. Our findings also suggest that histone-related epigenetic pathways may be implicated in promoting an inflammatory phenotype in GCA active patients. Finally, our study observed altered signaling communication, such as the Jagged-Notch signaling, between CD4+ T cells and monocytes that could have pathogenic relevance in GCA. CONCLUSIONS: Our study suggests the participation of novel cytokines and pathways and the occurrence of a disruption of monocyte-T cell crosstalk driving GCA pathogenesis.

2.
Cell Commun Signal ; 22(1): 220, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589923

RESUMEN

Endosomal single-stranded RNA-sensing Toll-like receptor-7/8 (TLR7/8) plays a pivotal role in inflammation and immune responses and autoimmune diseases. However, the mechanisms underlying the initiation of the TLR7/8-mediated autoimmune signaling remain to be fully elucidated. Here, we demonstrate that miR-574-5p is aberrantly upregulated in tissues of lupus prone mice and in the plasma of lupus patients, with its expression levels correlating with the disease activity. miR-574-5p binds to and activates human hTLR8 or its murine ortholog mTlr7 to elicit a series of MyD88-dependent immune and inflammatory responses. These responses include the overproduction of cytokines and interferons, the activation of STAT1 signaling and B lymphocytes, and the production of autoantigens. In a transgenic mouse model, the induction of miR-574-5p overexpression is associated with increased secretion of antinuclear and anti-dsDNA antibodies, increased IgG and C3 deposit in the kidney, elevated expression of inflammatory genes in the spleen. In lupus-prone mice, lentivirus-mediated silencing of miR-574-5p significantly ameliorates major symptoms associated with lupus and lupus nephritis. Collectively, these results suggest that the miR-574-5p-hTLR8/mTlr7 signaling is an important axis of immune and inflammatory responses, contributing significantly to the development of lupus and lupus nephritis.


Asunto(s)
Nefritis Lúpica , MicroARNs , Humanos , Ratones , Animales , Nefritis Lúpica/genética , Receptor Toll-Like 7/genética , Receptor Toll-Like 7/metabolismo , Receptor Toll-Like 8/genética , Receptor Toll-Like 8/metabolismo , Riñón/metabolismo , Ratones Transgénicos , MicroARNs/genética
3.
Ann Rheum Dis ; 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413168

RESUMEN

OBJECTIVES: Systemic lupus erythematosus (SLE) is characterised by systemic inflammation involving various immune cell types. Monocytes, pivotal in promoting and regulating inflammation in SLE, differentiate from classic monocytes into intermediate and non-classic monocytes, assuming diverse roles and changing their proportions in inflammation. In this study, we investigated the epigenetic and transcriptomic profiles of these and novel monocyte subsets in SLE in relation to activity and progression. METHODS: We obtained the DNA methylomes and transcriptomes of classic, intermediate, non-classic monocytes in patients with SLE (at first and follow-up visits) and healthy donors. We integrated these data with single-cell transcriptomics of SLE and healthy donors and interrogated their relationships with activity and progression. RESULTS: In addition to shared DNA methylation and transcriptomic alterations associated with a strong interferon signature, we identified monocyte subset-specific alterations, especially in DNA methylation, which reflect an impact of SLE on monocyte differentiation. SLE classic monocytes exhibited a proinflammatory profile and were primed for macrophage differentiation. SLE non-classic monocytes displayed a T cell differentiation-related phenotype, with Th17-regulating features. Changes in monocyte proportions, DNA methylation and expression occurred in relation to disease activity and involved the STAT pathway. Integration of bulk with single-cell RNA sequencing datasets revealed disease activity-dependent expansion of SLE-specific monocyte subsets, further supported the interferon signature for classic monocytes, and associated intermediate and non-classic populations with exacerbated complement activation. CONCLUSIONS: Disease activity in SLE drives a subversion of the epigenome and transcriptome programme in monocyte differentiation, impacting the function of different subsets and allowing to generate predictive methods for activity and progression.

4.
J Autoimmun ; 142: 103124, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37952293

RESUMEN

Giant cell arteritis (GCA) is a systemic vasculitis mediated by an aberrant immunological response against the blood vessel wall. Although the pathogenic mechanisms that drive GCA have not yet been elucidated, there is strong evidence that CD4+ T cells are key drivers of the inflammatory process occurring in this vasculitis. The aim of this study was to further delineate the role of CD4+ T cells in GCA by applying single-cell RNA sequencing and T cell receptor (TCR) repertoire profiling to 114.799 circulating CD4+ T cells from eight GCA patients in two different clinical states, active and in remission, and eight healthy controls. Our results revealed an expansion of cytotoxic CD4+ T lymphocytes (CTLs) in active GCA patients, which expressed higher levels of cytotoxic and chemotactic genes when compared to patients in remission and controls. Accordingly, differentially expressed genes in CTLs of active patients were enriched in pathways related to granzyme-mediated apoptosis, inflammation, and the recruitment of different immune cells, suggesting a role of this cell type in the inflammatory and vascular remodelling processes occurring in GCA. CTLs also exhibited a higher clonal expansion in active patients with respect to those in remission. Drug repurposing analysis prioritized maraviroc, which targeted CTLs, as potentially repositionable for this vasculitis. In addition, effector regulatory T cells (Tregs) were decreased in GCA and showed lower expression of genes involved in their suppressive activity. These findings provide further insights into the pathogenic role of CD4+ T cells in GCA and suggest targeting CTLs as a potential therapeutic option.


Asunto(s)
Arteritis de Células Gigantes , Humanos , Linfocitos T Reguladores , Linfocitos T Citotóxicos/patología , Perfilación de la Expresión Génica
5.
Eur J Immunol ; 54(1): e2350633, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37799110

RESUMEN

In COVID-19, hyperinflammatory and dysregulated immune responses contribute to severity. Patients with pre-existing autoimmune conditions can therefore be at increased risk of severe COVID-19 and/or associated sequelae, yet SARS-CoV-2 infection in this group has been little studied. Here, we performed single-cell analysis of peripheral blood mononuclear cells from patients with three major autoimmune diseases (rheumatoid arthritis, psoriasis, or multiple sclerosis) during SARS-CoV-2 infection. We observed compositional differences between the autoimmune disease groups coupled with altered patterns of gene expression, transcription factor activity, and cell-cell communication that substantially shape the immune response under SARS-CoV-2 infection. While enrichment of HLA-DRlow CD14+ monocytes was observed in all three autoimmune disease groups, type-I interferon signaling as well as inflammatory T cell and monocyte responses varied widely between the three groups of patients. Our results reveal disturbed immune responses to SARS-CoV-2 in patients with pre-existing autoimmunity, highlighting important considerations for disease treatment and follow-up.


Asunto(s)
Enfermedades Autoinmunes , COVID-19 , Humanos , SARS-CoV-2 , Leucocitos Mononucleares , Multiómica , Autoinmunidad , Análisis de la Célula Individual
6.
Trends Immunol ; 44(11): 902-916, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37813732

RESUMEN

Inborn errors of immunity (IEIs) comprise a variety of immune conditions leading to infections, autoimmunity, allergy, and cancer. Some IEIs have no identified mutation(s), while others with identical mutations can display heterogeneous presentations. These observations suggest the involvement of epigenetic mechanisms. Epigenetic alterations can arise from downstream activation of cellular pathways through both extracellular stimulation and genetic-associated changes, impacting epigenetic enzymes or their interactors. Therefore, we posit that epigenetic alterations and genetic defects do not exclude each other as a disease-causing etiology. In this opinion, encompassing both basic and clinical viewpoints, we focus on selected IEIs with mutations in transcription factors that interact with epigenetic enzymes. The intricate interplay between these factors offers insights into genetic and epigenetic mechanisms in IEIs.


Asunto(s)
Autoinmunidad , Hipersensibilidad , Humanos , Autoinmunidad/genética , Epigénesis Genética , Epigenómica , Mutación/genética
8.
Clin Epigenetics ; 14(1): 188, 2022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-36575526

RESUMEN

BACKGROUND: DNA methylation profiling of circulating cell-free DNA (cfDNA) has rapidly become a promising strategy for biomarker identification and development. The cell-type-specific nature of DNA methylation patterns and the direct relationship between cfDNA and apoptosis can potentially be used non-invasively to predict local alterations. In addition, direct detection of altered DNA methylation patterns performs well as a biomarker. In a previous study, we demonstrated marked DNA methylation alterations in brain tissue from patients with mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS). RESULTS: We performed DNA methylation profiling in cfDNA isolated from the serum of MTLE patients and healthy controls using BeadChip arrays followed by systematic bioinformatic analysis including deconvolution analysis and integration with DNase accessibility data sets. Differential cfDNA methylation analysis showed an overrepresentation of gene ontology terms and transcription factors related to central nervous system function and regulation. Deconvolution analysis of the DNA methylation data sets ruled out the possibility that the observed differences were due to changes in the proportional contribution of cortical neurons in cfDNA. Moreover, we found no overrepresentation of neuron- or glia-specific patterns in the described cfDNA methylation patterns. However, the MTLE-HS cfDNA methylation patterns featured a significant overrepresentation of the epileptic DNA methylation alterations previously observed in the hippocampus. CONCLUSIONS: Our results support the use of cfDNA methylation profiling as a rational approach to seeking non-invasive and reproducible epilepsy biomarkers.


Asunto(s)
Ácidos Nucleicos Libres de Células , Epilepsia del Lóbulo Temporal , Humanos , Metilación de ADN , Hipocampo , Epilepsia del Lóbulo Temporal/genética , Encéfalo , Ácidos Nucleicos Libres de Células/genética
9.
Genome Med ; 14(1): 134, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36443794

RESUMEN

BACKGROUND: COVID-19 manifests with a wide spectrum of clinical phenotypes, ranging from asymptomatic and mild to severe and critical. Severe and critical COVID-19 patients are characterized by marked changes in the myeloid compartment, especially monocytes. However, little is known about the epigenetic alterations that occur in these cells during hyperinflammatory responses in severe COVID-19 patients. METHODS: In this study, we obtained the DNA methylome and transcriptome of peripheral blood monocytes from severe COVID-19 patients. DNA samples extracted from CD14 + CD15- monocytes of 48 severe COVID-19 patients and 11 healthy controls were hybridized on MethylationEPIC BeadChip arrays. In parallel, single-cell transcriptomics of 10 severe COVID-19 patients were generated. CellPhoneDB was used to infer changes in the crosstalk between monocytes and other immune cell types. RESULTS: We observed DNA methylation changes in CpG sites associated with interferon-related genes and genes associated with antigen presentation, concordant with gene expression changes. These changes significantly overlapped with those occurring in bacterial sepsis, although specific DNA methylation alterations in genes specific to viral infection were also identified. We also found these alterations to comprise some of the DNA methylation changes occurring during myeloid differentiation and under the influence of inflammatory cytokines. A progression of DNA methylation alterations in relation to the Sequential Organ Failure Assessment (SOFA) score was found to be related to interferon-related genes and T-helper 1 cell cytokine production. CellPhoneDB analysis of the single-cell transcriptomes of other immune cell types suggested the existence of altered crosstalk between monocytes and other cell types like NK cells and regulatory T cells. CONCLUSION: Our findings show the occurrence of an epigenetic and transcriptional reprogramming of peripheral blood monocytes, which could be associated with the release of aberrant immature monocytes, increased systemic levels of pro-inflammatory cytokines, and changes in immune cell crosstalk in these patients.


Asunto(s)
COVID-19 , Monocitos , Humanos , Transcriptoma , Citocinas , COVID-19/genética , Interferones , Antivirales , Epigénesis Genética
10.
Cell Mol Immunol ; 19(11): 1215-1234, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36220996

RESUMEN

B cells play a pivotal role in the pathogenesis of autoimmune diseases. Although previous studies have shown many genetic polymorphisms associated with B-cell activation in patients with various autoimmune disorders, progress in epigenetic research has revealed new mechanisms leading to B-cell hyperactivation. Epigenetic mechanisms, including those involving histone modifications, DNA methylation, and noncoding RNAs, regulate B-cell responses, and their dysregulation can contribute to the pathogenesis of autoimmune diseases. Patients with autoimmune diseases show epigenetic alterations that lead to the initiation and perpetuation of autoimmune inflammation. Moreover, many clinical and animal model studies have shown the promising potential of epigenetic therapies for patients. In this review, we present an up-to-date overview of epigenetic mechanisms with a focus on their roles in regulating functional B-cell subsets. Furthermore, we discuss epigenetic dysregulation in B cells and highlight its contribution to the development of autoimmune diseases. Based on clinical and preclinical evidence, we discuss novel epigenetic biomarkers and therapies for patients with autoimmune disorders.


Asunto(s)
Enfermedades Autoinmunes , Epigénesis Genética , Animales , Metilación de ADN/genética , Enfermedades Autoinmunes/genética , Linfocitos B , ARN no Traducido/genética
11.
Nucleic Acids Res ; 50(19): 10981-10994, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36305821

RESUMEN

Dendritic cells (DCs), the most potent antigen-presenting cells, are necessary for effective activation of naïve T cells. DCs' immunological properties are modulated in response to various stimuli. Active DNA demethylation is crucial for DC differentiation and function. Vitamin C, a known cofactor of ten-eleven translocation (TET) enzymes, drives active demethylation. Vitamin C has recently emerged as a promising adjuvant for several types of cancer; however, its effects on human immune cells are poorly understood. In this study, we investigate the epigenomic and transcriptomic reprogramming orchestrated by vitamin C in monocyte-derived DC differentiation and maturation. Vitamin C triggers extensive demethylation at NF-κB/p65 binding sites, together with concordant upregulation of antigen-presentation and immune response-related genes during DC maturation. p65 interacts with TET2 and mediates the aforementioned vitamin C-mediated changes, as demonstrated by pharmacological inhibition. Moreover, vitamin C increases TNFß production in DCs through NF-κB, in concordance with the upregulation of its coding gene and the demethylation of adjacent CpGs. Finally, vitamin C enhances DC's ability to stimulate the proliferation of autologous antigen-specific T cells. We propose that vitamin C could potentially improve monocyte-derived DC-based cell therapies.


Asunto(s)
Ácido Ascórbico , Células Dendríticas , Epigénesis Genética , FN-kappa B , Humanos , Ácido Ascórbico/farmacología , Diferenciación Celular/genética , FN-kappa B/metabolismo , Linfocitos T/metabolismo , Reprogramación Celular
12.
Front Immunol ; 13: 938240, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36072607

RESUMEN

Common variable immunodeficiency (CVID) is the most prevalent form of symptomatic primary immunodeficiency in humans. The genetic cause of CVID is still unknown in about 70% of cases. Ten percent of CVID patients carry heterozygous mutations in the tumor necrosis factor receptor superfamily member 13B gene (TNFRSF13B), encoding TACI. Mutations in TNFRSF13B alone may not be sufficient for the development of CVID, as 1% of the healthy population carry these mutations. The common hypothesis is that TACI mutations are not fully penetrant and additional factors contribute to the development of CVID. To determine these additional factors, we investigated the perturbations of transcription factor (TF) binding and the transcriptome profiles in unstimulated and CD40L/IL21-stimulated naïve B cells from CVID patients harboring the C104R mutation in TNFRSF13B and compared them to their healthy relatives with the same mutation. In addition, the proteome of stimulated naïve B cells was investigated. For functional validation, intracellular protein concentrations were measured by flow cytometry. Our analysis revealed 8% less accessible chromatin in unstimulated naïve B cells and 25% less accessible chromatin in class-switched memory B cells from affected and unaffected TACI mutation carriers compared to healthy donors. The most enriched TF binding motifs in TACI mutation carriers involved members from the ETS, IRF, and NF-κB TF families. Validation experiments supported dysregulation of the NF-κB and MAPK pathways. In steady state, naïve B cells had increased cell death pathways and reduced cell metabolism pathways, while after stimulation, enhanced immune responses and decreased cell survival were detected. Using a multi-omics approach, our findings provide valuable insights into the impaired biology of naïve B cells from TACI mutation carriers.


Asunto(s)
Inmunodeficiencia Variable Común , FN-kappa B , Linfocitos B , Cromatina/metabolismo , Humanos , Mutación , FN-kappa B/metabolismo
13.
Ann Rheum Dis ; 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35705375

RESUMEN

OBJECTIVES: Giant cell arteritis (GCA) is a complex systemic vasculitis mediated by the interplay between both genetic and epigenetic factors. Monocytes are crucial players of the inflammation occurring in GCA. Therefore, characterisation of the monocyte methylome and transcriptome in GCA would be helpful to better understand disease pathogenesis. METHODS: We performed an integrated epigenome-and transcriptome-wide association study in CD14+ monocytes from 82 patients with GCA, cross-sectionally classified into three different clinical statuses (active, in remission with or without glucocorticoid (GC) treatment), and 31 healthy controls. RESULTS: We identified a global methylation and gene expression dysregulation in GCA monocytes. Specifically, monocytes from active patients showed a more proinflammatory phenotype compared with healthy controls and patients in remission. In addition to inflammatory pathways known to be involved in active GCA, such as response to IL-6 and IL-1, we identified response to IL-11 as a new pathway potentially implicated in GCA. Furthermore, monocytes from patients in remission with treatment showed downregulation of genes involved in inflammatory processes as well as overexpression of GC receptor-target genes. Finally, we identified changes in DNA methylation correlating with alterations in expression levels of genes with a potential role in GCA pathogenesis, such as ITGA7 and CD63, as well as genes mediating the molecular response to GC, including FKBP5, ETS2, ZBTB16 and ADAMTS2. CONCLUSION: Our results revealed profound alterations in the methylation and transcriptomic profiles of monocytes from GCA patients, uncovering novel genes and pathways involved in GCA pathogenesis and in the molecular response to GC treatment.

14.
Nat Commun ; 13(1): 1779, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35365635

RESUMEN

Common variable immunodeficiency (CVID), the most prevalent symptomatic primary immunodeficiency, displays impaired terminal B-cell differentiation and defective antibody responses. Incomplete genetic penetrance and ample phenotypic expressivity in CVID suggest the participation of additional pathogenic mechanisms. Monozygotic (MZ) twins discordant for CVID are uniquely valuable for studying the contribution of epigenetics to the disease. Here, we generate a single-cell epigenomics and transcriptomics census of naïve-to-memory B cell differentiation in a CVID-discordant MZ twin pair. Our analysis identifies DNA methylation, chromatin accessibility and transcriptional defects in memory B-cells mirroring defective cell-cell communication upon activation. These findings are validated in a cohort of CVID patients and healthy donors. Our findings provide a comprehensive multi-omics map of alterations in naïve-to-memory B-cell transition in CVID and indicate links between the epigenome and immune cell cross-talk. Our resource, publicly available at the Human Cell Atlas, gives insight into future diagnosis and treatments of CVID patients.


Asunto(s)
Inmunodeficiencia Variable Común , Linfocitos B , Inmunodeficiencia Variable Común/diagnóstico , Inmunodeficiencia Variable Común/genética , Epigénesis Genética , Epigenómica , Centro Germinal , Humanos
15.
Cancers (Basel) ; 14(5)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35267487

RESUMEN

Dendritic cells (DCs) are professional antigen-presenting cells with the distinctive property of inducing the priming and differentiation of naïve CD4+ and CD8+ T cells into helper and cytotoxic effector T cells to develop efficient tumor-immune responses. DCs display pathogenic and tumorigenic antigens on their surface through major histocompatibility complexes to directly influence the differentiation of T cells. Cells in the tumor microenvironment (TME), including cancer cells and other immune-infiltrated cells, can lead DCs to acquire an immune-tolerogenic phenotype that facilitates tumor progression. Epigenetic alterations contribute to cancer development, not only by directly affecting cancer cells, but also by their fundamental role in the differentiation of DCs that acquire a tolerogenic phenotype that, in turn, suppresses T cell-mediated responses. In this review, we focus on the epigenetic regulation of DCs that have infiltrated the TME and discuss how knowledge of the epigenetic control of DCs can be used to improve DC-based vaccines for cancer immunotherapy.

16.
JCI Insight ; 7(9)2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35324478

RESUMEN

Identifying predictive biomarkers at early stages of inflammatory arthritis is crucial for starting appropriate therapies to avoid poor outcomes. Monocytes (MOs) and macrophages, largely associated with arthritis, are contributors and sensors of inflammation through epigenetic modifications. In this study, we investigated associations between clinical features and DNA methylation in blood and synovial fluid (SF) MOs in a prospective cohort of patients with early inflammatory arthritis. DNA methylation profiles of undifferentiated arthritis (UA) blood MOs exhibited marked alterations in comparison with those from healthy donors. We identified additional differences both in blood and SF MOs after comparing patients with UA grouped by their future outcomes, i.e., good versus poor. Patient profiles in subsequent visits revealed a reversion toward a healthy level in both groups, those requiring disease-modifying antirheumatic drugs and those who remitted spontaneously. Changes in disease activity between visits also affected DNA methylation, which was partially concomitant in the SF of UA and in blood MOs of patients with rheumatoid arthritis. Epigenetic similarities between arthritis types allow a common prediction of disease activity. Our results constitute a resource of DNA methylation-based biomarkers of poor prognosis, disease activity, and treatment efficacy for the personalized clinical management of early inflammatory arthritis.


Asunto(s)
Artritis Reumatoide , Epigenoma , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/genética , Biomarcadores , Humanos , Monocitos , Pronóstico , Estudios Prospectivos , Membrana Sinovial
17.
Clin Immunol ; 234: 108920, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34973429

RESUMEN

During the past twenty years, a wide range of studies have established the existence of epigenetic alterations, particularly DNA methylation changes, in lupus. Epigenetic changes might have different contributions in children-onset versus adult-onset lupus. DNA methylation alterations have been identified and characterized in relation to disease activity and damage, different lupus subtypes and responses to drugs. However, to date there has been no practical application of these findings in the clinical milieu. In this article, we provide a review of key studies showing the relationship between DNA methylation and the many clinical aspects related to lupus. We also propose several options, in relation to the range of methodological developments and experimental design, that could optimize these findings and make them amenable for use in clinical practice.


Asunto(s)
Metilación de ADN , Lupus Eritematoso Sistémico/genética , Predisposición Genética a la Enfermedad , Humanos , Lupus Eritematoso Sistémico/clasificación , Lupus Eritematoso Sistémico/tratamiento farmacológico , Pronóstico
18.
Cell Rep ; 38(3): 110244, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35045292

RESUMEN

The active form of vitamin D, 1,25-dihydroxyvitamin D3, induces a stable tolerogenic phenotype in dendritic cells (DCs). This process involves the vitamin D receptor (VDR), which translocates to the nucleus, binds its cognate genomic sites, and promotes epigenetic and transcriptional remodeling. In this study, we report the occurrence of vitamin D-specific DNA demethylation and transcriptional activation at VDR binding sites associated with the acquisition of tolerogenesis in vitro. Differentiation to tolerogenic DCs associates with activation of the IL-6-JAK-STAT3 pathway. We show that JAK2-mediated STAT3 phosphorylation is specific to vitamin D stimulation. VDR and the phosphorylated form of STAT3 interact with each other to form a complex with methylcytosine dioxygenase TET2. Most importantly, pharmacological inhibition of JAK2 reverts vitamin D-induced tolerogenic properties of DCs. This interplay among VDR, STAT3, and TET2 opens up possibilities for modulating DC immunogenic properties in clinics.


Asunto(s)
Proteínas de Unión al ADN/inmunología , Células Dendríticas/inmunología , Dioxigenasas/inmunología , Tolerancia Inmunológica/inmunología , Receptores de Calcitriol/inmunología , Factor de Transcripción STAT3/inmunología , Células Cultivadas , Proteínas de Unión al ADN/metabolismo , Células Dendríticas/metabolismo , Dioxigenasas/metabolismo , Humanos , Receptores de Calcitriol/metabolismo , Factor de Transcripción STAT3/metabolismo
19.
Nucleic Acids Res ; 50(1): 108-126, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34893889

RESUMEN

Glucocorticoids (GCs) exert potent anti-inflammatory effects in immune cells through the glucocorticoid receptor (GR). Dendritic cells (DCs), central actors for coordinating immune responses, acquire tolerogenic properties in response to GCs. Tolerogenic DCs (tolDCs) have emerged as a potential treatment for various inflammatory diseases. To date, the underlying cell type-specific regulatory mechanisms orchestrating GC-mediated acquisition of immunosuppressive properties remain poorly understood. In this study, we investigated the transcriptomic and epigenomic remodeling associated with differentiation to DCs in the presence of GCs. Our analysis demonstrates a major role of MAFB in this process, in synergy with GR. GR and MAFB both interact with methylcytosine dioxygenase TET2 and bind to genomic loci that undergo specific demethylation in tolDCs. We also show that the role of MAFB is more extensive, binding to thousands of genomic loci in tolDCs. Finally, MAFB knockdown erases the tolerogenic properties of tolDCs and reverts the specific DNA demethylation and gene upregulation. The preeminent role of MAFB is also demonstrated in vivo for myeloid cells from synovium in rheumatoid arthritis following GC treatment. Our results imply that, once directly activated by GR, MAFB plays a critical role in orchestrating the epigenomic and transcriptomic remodeling that define the tolerogenic phenotype.


Asunto(s)
Células Dendríticas/inmunología , Epigénesis Genética , Tolerancia Inmunológica , Factor de Transcripción MafB/metabolismo , Receptores de Glucocorticoides/metabolismo , Adulto , Células Cultivadas , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Dioxigenasas/metabolismo , Femenino , Humanos , Factor de Transcripción MafB/genética , Masculino , Persona de Mediana Edad
20.
Prog Neurobiol ; 209: 102207, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34923048

RESUMEN

Mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) is the most common focal epilepsy in adults. It is characterized by alarming rates of pharmacoresistance. Epileptogenesis is associated with the occurrence of epigenetic alterations, and the few epigenetic studies carried out in MTLE-HS have mainly focused on the hippocampus. In this study, we obtained the DNA methylation profiles from both the hippocampus and anterior temporal neocortex of MTLE-HS patients subjected to resective epilepsy surgery and autopsied non-epileptic controls. We assessed the progressive nature of DNA methylation changes in relation to epilepsy duration. We identified significantly altered hippocampal DNA methylation patterns encompassing multiple pathways known to be involved in epileptogenesis. DNA methylation changes were even more striking in the neocortex, wherein pathogenic pathways and genes were common to both tissues. Most importantly, DNA methylation changes at many genomic sites varied significantly with epilepsy duration. Such progressive changes were associated with inflammation-related genes in the hippocampus. Our results suggest that the neocortex, relatively spared of extensive histopathological damage, may also be involved in epilepsy development. These results also open the possibility that the observed neocortical impairment could represent a preliminary stage of epileptogenesis before the establishment of chronic lesions or a consequence of prolonged seizure exposure. Our two-tissue multi-level characterization of the MTLE-HS DNA methylome suggests the occurrence of a self-propagating inflammatory wave of epigenetic dysregulation.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Adulto , Metilación de ADN/genética , Epilepsia del Lóbulo Temporal/genética , Hipocampo/patología , Humanos , Esclerosis/complicaciones , Esclerosis/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...