Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros










Intervalo de año de publicación
1.
Mar Pollut Bull ; 203: 116394, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38705001

RESUMEN

Seagrasses are marine flowering plants that create critical coastal ecosystems and are threatened by warming. Clonal expansion is generally the dominant strategy for meadow recovery, while sexual reproduction strongly differs among species (e.g., monoecious and diecious species, some creating seed banks, viviparous seedlings). In 2022, the Western Mediterranean underwent unprecedented warming, and, associated with it, we observed flowering (100 %) across 11 Posidonia oceanica meadows in Mallorca, Balearic Islands. Furthermore, 64 % of the sites also exhibited pseudovivipary, an extremely rare phenomenon in angiosperms whereby plantlets replace sexual reproductive structures, producing clones of the maternal plant. Our results support the notion that P. oceanica flowering and pseudovivipary (genetically confirmed) are triggered by warming, never before being pseudovivipary reported across multiple sites in a marine plant. Considering the negative impacts that warming can have on seagrasses, existence of widespread pseudovivipary is a critical aspect to consider for understanding mechanisms of resilience in seagrasses.

2.
Glob Chang Biol ; 30(1): e17105, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273554

RESUMEN

Global environmental change drives diversity loss and shifts in community structure. A key challenge is to better understand the impacts on ecosystem function and to connect species and trait diversity of assemblages with ecosystem properties that are in turn linked to ecosystem functioning. Here we quantify shifts in species composition and trait diversity associated with ocean acidification (OA) by using field measurements at marine CO2 vent systems spanning four reef habitats across different depths in a temperate coastal ecosystem. We find that both species and trait diversity decreased, and that ecosystem properties (understood as the interplay between species, traits, and ecosystem function) shifted with acidification. Furthermore, shifts in trait categories such as autotrophs, filter feeders, herbivores, and habitat-forming species were habitat-specific, indicating that OA may produce divergent responses across habitats and depths. Combined, these findings reveal the importance of connecting species and trait diversity of marine benthic habitats with key ecosystem properties to anticipate the impacts of global environmental change. Our results also generate new insights on the predicted general and habitat-specific ecological consequences of OA.


Asunto(s)
Ecosistema , Agua de Mar , Agua de Mar/química , Concentración de Iones de Hidrógeno , Acidificación de los Océanos , Dióxido de Carbono
3.
PLoS One ; 18(11): e0293702, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37943756

RESUMEN

Marine fjords along the northern Labrador coast of Arctic Canada are influenced by freshwater, nutrients, and sediment inputs from ice fields and rivers. These ecosystems, further shaped by both Atlantic and Arctic water masses, are important habitats for fishes, marine mammals, seabirds, and marine invertebrates and are vital to the Labrador Inuit who have long depended on these areas for sustenance. Despite their ecological and socio-cultural importance, these marine ecosystems remain largely understudied. Here we conducted the first quantitative underwater scuba surveys, down to 12 m, of the nearshore marine ecology of Nachvak Fjord, which is surrounded by Torngat Mountains National Park located in Nunatsiavut, the Indigenous lands claim region of northeastern Canada. Our goal was to provide the Nunatsiavut Government with a baseline of the composition and environmental influences on the subtidal community in this isolated region as they work towards the creation of an Indigenous-led National Marine Conservation Area that includes Nachvak Fjord. We identified four major benthic habitat types: (1) boulders (2) rocks with sediment, (3) sediment with rocks, and (4) unconsolidated sediments, including sand, gravel, and cobble. Biogenic cover (e.g., kelp, coralline algae, and sediment) explained much of the variability in megabenthic invertebrate community structure. The kelp species Alaria esculenta, Saccharina latissima, and Laminaria solidungula dominated the boulder habitat outside of the fjord covering 35%, 13%, and 11% of the sea floor, respectively. In contrast, the middle and inner portions of the fjord were devoid of kelp and dominated by encrusting coralline algae. More diverse megabenthic invertebrate assemblages were detected within the fjord compared to the periphery. Fish assemblages were depauperate overall with the shorthorn sculpin, Myoxocephalus scorpius, and the Greenland cod, Gadus ogac, dominating total fish biomass contributing 64% and 30%, respectively. Understanding the composition and environmental influences within this fjord ecosystem not only contributes towards the protection of this ecological and culturally important region but serves as a baseline in a rapidly changing climatic region.


Asunto(s)
Gadiformes , Kelp , Animales , Ecosistema , Terranova y Labrador , Estuarios , Invertebrados , Biomasa , Peces , Mamíferos
4.
Ecol Evol ; 13(9): e10428, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37664496

RESUMEN

In Mediterranean rocky shores, the black sea urchin Arbacia lixula is often associated with communities dominated by encrusting corallines, devoid of fleshy algae. While it is commonly known as a diurnal herbivore, this species also migrates at night from hidden to more exposed habitats. Here, we provide the first experimental evidence of an adjustment to a predominant nocturnal behaviour in a population of A. lixula. Sea urchin densities changed from nearly zero during daytime to more than 16 urchins m-2 at night in treatment plots where the sea urchins were removed. We suggest that the observed behaviour was triggered by our experimental manipulations and was a response to the presence of dead conspecifics and small predatory fishes attracted by the urchin culling. Further research is needed to assess whether our findings can be generalised to the behaviour of A. lixula in areas where sea urchins are under strong pressure from diurnal predators. In these cases, it is important to perform sea urchin density counts at night to avoid misleading assessments about the herbivore pressure in a littoral area.

5.
PLoS One ; 18(1): e0279200, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36607974

RESUMEN

The kelp forests of southern Patagonia have a large diversity of habitats, with remote islands, archipelagos, peninsulas, gulfs, channels, and fjords, which are comprised of a mixture of species with temperate and sub-Antarctic distributions, creating a unique ecosystem that is among the least impacted on Earth. We investigated the distribution, diversity, and abundance of marine macroinvertebrate assemblages from the kelp forests of southern Patagonia over a large spatial scale and examined the environmental drivers contributing to the observed patterns in assemblage composition. We analyzed data from 120 quantitative underwater transects (25 x 2 m) conducted within kelp forests in the southern Patagonian fjords in the Kawésqar National Reserve (KNR), the remote Cape Horn (CH) and Diego Ramírez (DR) archipelagos of southern Chile, and the Mitre Peninsula (MP) and Isla de los Estados (IE) in the southern tip of Argentina. We observed rich assemblages of macroinvertebrates among these kelp forests, with a total of 185 unique taxa from 10 phyla and 23 classes/infraorders across the five regions. The number of taxa per transect was highest at IE, followed by MP, CH, and KNR, with the lowest number recorded at DR. The trophic structure of the macroinvertebrate assemblages was explained mostly by wave exposure (28% of the variation), followed by salinity (12%) and the KNR region (11%). KNR was most distinct from the other regions with a greater abundance of deposit feeders, likely driven by low salinity along with high turbidity and nutrients from terrigenous sources and glacial melt. Our study provides the first broad-scale description of the benthic assemblages associated with kelp forests in this vast and little-studied region and helps to establish baselines for an area that is currently lightly influenced by local anthropogenic factors and less impacted by climate change compared with other kelp forests globally.


Asunto(s)
Ecosistema , Kelp , Bosques , Chile , Argentina
6.
Ecol Lett ; 25(11): 2525-2539, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36209457

RESUMEN

As invasive species spread, the ability of local communities to resist invasion depends on the strength of biotic interactions. Evolutionarily unused to the invader, native predators or herbivores may be initially wary of consuming newcomers, allowing them to proliferate. However, these relationships may be highly dynamic, and novel consumer-resource interactions could form as familiarity grows. Here, we explore the development of effective biotic resistance towards a highly invasive alga using multiple space-for-time approaches. We show that the principal native Mediterranean herbivore learns to consume the invader within less than a decade. At recently invaded sites, the herbivore actively avoided the alga, shifting to distinct preference and high consumptions at older sites. This rapid strengthening of the interaction contributed to the eventual collapse of the alga after an initial dominance. Therefore, our results stress the importance of conserving key native populations to allow communities to develop effective resistance mechanisms against invaders.


Asunto(s)
Herbivoria , Especies Introducidas , Ecosistema , Plantas , Animales
7.
PLoS One ; 17(7): e0271731, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35901124

RESUMEN

Osa Peninsula in remote southwest Costa Rica harbors 2.5% of global terrestrial biodiversity in only 1,200 km2 and has the largest remaining tract of Pacific lowland wet forest in Mesoamerica. However, little is known about the marine ecosystems of this diverse region. Much of the coastline consists of soft sediment exposed to strong wave action. Three major hard bottom habitat types define this region, including: 1) coral reefs around Isla del Caño Biological Reserve, a no-take marine protected area (MPA) of 52 km2, 2) coastal rocky reefs and islets along the peninsula, including Corcovado National Park, and 3) submerged pinnacles just outside the Isla del Caño MPA. Average coral cover at Isla del Caño was 21%, composed primarily of Porites lobata and Pocillopora elegans. In contrast, coastal rocky reefs were dominated by turf algae (39.8%) and macroalgae (20.7%) with low coral cover (1.1%). Submerged pinnacles were dominated by crustose coralline algae (33.3%) and erect coralline algae (25.7%). Fish assemblage characteristics (species richness, abundance, biomass) were significantly higher at the pinnacles compared to the other habitats and was dominated by schooling species such as Haemulon steindachneri, and the herbivores Kyphosus ocyurus, and Acanthurus xanthopterus. Top predators, primarily Triaenodon obesus, Caranx sexfasciatus, and Lutjanus argentimaculatus, were also most abundant at these pinnacles and accounted for the largest differences in fish trophic structure among habitats. Despite Isla del Caño being fully protected from fishing, biomass was similar to fished areas along the coast and lower than the adjacent submerged pinnacles outside the reserve. Similarly, Corcovado National Park includes 20.3 km2 of no-take MPAs; however, there is limited enforcement, and we noted several instances of fishing within the park. The unique configuration of healthy offshore coral reefs and pinnacles connected to coastal habitats provides corridors for many species including large predators such as sharks and other marine megafauna, which warrants additional protection.


Asunto(s)
Antozoos , Tiburones , Animales , Biodiversidad , Conservación de los Recursos Naturales , Arrecifes de Coral , Costa Rica , Ecosistema , Peces , Océanos y Mares , Bosque Lluvioso
8.
Adv Mar Biol ; 89: 1-51, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34583814

RESUMEN

Global change is striking harder and faster in the Mediterranean Sea than elsewhere, where high levels of human pressure and proneness to climate change interact in modifying the structure and disrupting regulative mechanisms of marine ecosystems. Rocky reefs are particularly exposed to such environmental changes with ongoing trends of degradation being impressive. Due to the variety of habitat types and associated marine biodiversity, rocky reefs are critical for the functioning of marine ecosystems, and their decline could profoundly affect the provision of essential goods and services which human populations in coastal areas rely upon. Here, we provide an up-to-date overview of the status of rocky reefs, trends in human-driven changes undermining their integrity, and current and upcoming management and conservation strategies, attempting a projection on what could be the future of this essential component of Mediterranean marine ecosystems.


Asunto(s)
Biodiversidad , Ecosistema , Cambio Climático , Conservación de los Recursos Naturales , Arrecifes de Coral , Humanos , Mar Mediterráneo
9.
PLoS One ; 16(9): e0257662, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34543325

RESUMEN

Knowledge of the ecology of the fish fauna associated with kelp (primarily Macrocystis pyrifera) forests in Southern Patagonia is scarce, especially in how abiotic and biotic variables influence their structure, diversity, and distribution. This information is important for the management and conservation of this unique ecosystem, which has minimal anthropogenic impacts at present. We analyzed data from 122 quantitative underwater transects conducted within kelp forests at 61 stations from Chile's southern Patagonian fjords to the Cape Horn and Diego Ramirez archipelagos and the southern tip of Argentina, including the Mitre Peninsula and Isla de los Estados. In total, 25 fish species belonging to 13 families were observed. Multivariate analysis indicated that there are significant differences in fish assemblage structure among locations and wave exposures, which was driven primarily by Patagonotothen sima and Paranotothenia magellanica, which occurred on exposed and semi-exposed stations. P. cornucola was mainly distributed across sheltered stations of the Kawésqar National Park. Temperature, salinity, depth, and kelp density influenced fish assemblage structure, with the highest diversity in areas with the lowest temperature and greater depth at Isla de los Estados. In contrast, species richness, diversity, abundance, and biomass were all lower in areas with high density of the understory kelp Lessonia spp., which might be driven by the absence of P. tessellata, P. squamiceps and P. cornucola, the most important species in terms of occurrence, abundance, and biomass. Our study provides the first broad-scale description of the fish assemblages associated with kelp forests along the southern cone of South America based on non-invasive visual transects, improving our knowledge of the distribution of fish assemblages across several environmental conditions in this vast and little-studied area.


Asunto(s)
Ecosistema , Kelp , Biodiversidad , Bosques , Macrocystis
10.
Ecology ; 102(9): e03440, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34143423

RESUMEN

Invasive species pose a major threat to global diversity, and once they are well established their eradication typically becomes unfeasible. However, certain natural mechanisms can increase the resistance of native communities to invaders and can be used to guide effective management policies. Both competition and herbivory have been identified as potential biotic resistance mechanisms that can limit plant invasiveness, but it is still under debate to what extent they might be effective against well-established invaders. Surprisingly, whereas biotic mechanisms are known to interact strongly, most studies to date have examined single biotic mechanisms separately, which likely influences our understanding of the strength and effectiveness of biotic resistance against invaders. Here we use long-term field data, benthic assemblage sampling, and exclusion experiments to assess the effect of native assemblage complexity and herbivory on the invasion dynamics of a successful invasive species, the alga Caulerpa cylindracea. A higher complexity of the native algal assemblage limited C. cylindracea invasion, probably through competition by canopy-forming and erect algae. Additionally, high herbivory pressure by the fish Sarpa salpa reduced C. cylindracea abundance by more than four times. However, long-term data of the invasion reflects that biotic resistance strength can vary across the invasion process and it is only where high assemblage complexity is concomitant with high herbivory pressure, that the most significant limitation is observed (synergistic effect). Overall, the findings reported in this study highlight that neglecting the interactions between biotic mechanisms during invasive processes and restricting the studied time scales may lead to underestimations of the true capacity of native assemblages to develop resistance to invaders.


Asunto(s)
Biodiversidad , Especies Introducidas , Ecosistema , Herbivoria
11.
PLoS One ; 16(4): e0249413, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33852615

RESUMEN

The newly created Kawésqar National Park (KNP) and National Reserve (KNR) in southern Chile consists of diverse terrestrial and marine habitats, which includes the southern terminus of the Andes, the Southern Patagonia Ice Fields, sub-Antarctic rainforests, glaciers, fjords, lakes, wetlands, valleys, channels, and islands. The marine environment is influenced by wide ranging hydrological factors such as glacier melt, large terrigenous inputs, high precipitation, strong currents, and open ocean water masses. Owing to the remoteness, rugged terrain, and harsh environmental conditions, little is known about this vast region, particularly the marine realm. To this end, we conducted an integrated ecological assessment using SCUBA and remote cameras down to 600 m to examine this unique and largely unexplored ecosystem. Kelp forests (primarily Macrocystis pyrifera) dominate the nearshore ecosystem and provide habitat for myriad benthic organisms. In the fjords, salinity was low and both turbidity and nutrients from terrigenous sources were high, with benthic communities dominated by active suspension feeders (e.g., Bivalvia, Ascidiacea, and Bryozoa). Areas closer to the Pacific Ocean showed more oceanic conditions with higher salinity and lower turbidity, with benthic communities experiencing more open benthic physical space in which predators (e.g., Malacostraca and Asteroidea) and herbivorous browsers (e.g., Echinoidea and Gastropoda) were more conspicuous components of the community compared to the inner fjords. Hagfish (Myxine sp.) was the most abundant and frequently occurring fish taxa observed on deep-sea cameras (80% of deployments), along with several taxa of sharks (e.g., Squaliformes, Etmopteridae, Somniosidae, Scyliorhinidae), which collectively were also observed on 80% of deep-sea camera deployments. The kelp forests, deep fjords, and other nearshore habitats of the KNR represent a unique ecosystem with minimal human impacts at present. The KNR is part of the ancestral territory of the indigenous Kawésqar people and their traditional knowledge, including the importance of the land-sea connection in structuring the marine communities of this region, is strongly supported by our scientific findings.


Asunto(s)
Organismos Acuáticos , Biodiversidad , Parques Recreativos/estadística & datos numéricos , Chile , Cubierta de Hielo , Océano Pacífico
12.
Biodivers Data J ; 9: e61909, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33824617

RESUMEN

BACKGROUND: The algal flora of the Island of Santa Maria (eastern group of the Azores archipelago) has attracted interest of researchers on past occasions (Drouët 1866, Agardh 1870, Trelease 1897, Schmidt 1931, Ardré et al. 1974, Fralick and Hehre 1990, Neto et al. 1991, Morton and Britton 2000, Amen et al. 2005, Wallenstein and Neto 2006, Tittley et al. 2009, Wallenstein et al. 2009a, Wallenstein et al. 2010, Botelho et al. 2010, Torres et al. 2010, León-Cisneros et al. 2011, Martins et al. 2014, Micael et al. 2014, Rebelo et al. 2014, Ávila et al. 2015, Ávila et al. 2016, Machín-Sánchez et al. 2016, Uchman et al. 2016, Johnson et al. 2017, Parente et al. 2018). Nevertheless, the Island macroalgal flora is not well-known as published information reflects limited collections obtained in short-term visits by scientists. To overcome this, a thorough investigation, encompassing collections and presence data recording, was undertaken at both the littoral and sublittoral levels down to a depth of approximately 40 m, covering an area of approximately 64 km2. The resultant taxonomic records are listed in the present paper which also provides information on species ecology and occurrence around the Island, improving, thereby, the knowledge of the Azorean macroalgal flora at both local and regional scales. NEW INFORMATION: A total of 2329 specimens (including some taxa identified only to genus level) belonging to 261 taxa of macroalgae are registered, comprising 152 Rhodophyta, 43 Chlorophyta and 66 Ochrophyta (Phaeophyceae). Of these, 174 were identified to species level (102 Rhodophyta, 29 Chlorophyta and 43 Ochrophyta), encompassing 52 new records for the Island (30 Rhodophyta, 9 Chlorophyta and 13 Ochrophyta), 2 Macaronesian endemics (Laurencia viridis Gil-Rodríguez & Haroun; and Millerella tinerfensis (Seoane-Camba) S.M.Boo & J.M.Rico), 10 introduced (the Rhodophyta Acrothamnion preissii (Sonder) E.M.Wollaston, Antithamnion hubbsii E.Y.Dawson, Asparagopsis armata Harvey, Bonnemaisonia hamifera Hariot, Melanothamnus harveyi (Bailey) Díaz-Tapia & Maggs, Scinaia acuta M.J.Wynne and Symphyocladia marchantioides (Harvey) Falkenberg; the Chlorophyta Codium fragile subsp. fragile (Suringar) Hariot; and the Ochrophyta Hydroclathrus tilesii (Endlicher) Santiañez & M.J.Wynne, and Papenfussiella kuromo (Yendo) Inagaki) and 18 species of uncertain status (11 Rhodophyta, 3 Chlorophyta and 4 Ochrophyta).

13.
Biodivers Data J ; 9: e64969, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33911918

RESUMEN

BACKGROUND: The macroalgal flora of the Island of São Miguel (eastern group of the Azores Archipelago) has attracted the interest of many researchers in the past, the first publications going back to the nineteenth century. Initial studies were mainly taxonomic, resulting in the publication of a checklist of the Azorean benthic marine algae. Later, the establishment of the University of the Azores on the Island permitted the logistic conditions to develop both temporal studies and long-term research and this resulted in a significant increase on research directed at the benthic marine algae and littoral communities of the Island and consequent publications.Prior to the present paper, the known macroalgal flora of São Miguel Island comprised around 260 species. Despite this richness, a significant amount of the research was never made public, notably Masters and PhD theses encompassing information regarding presence data recorded at littoral and sublittoral levels down to a depth of approximately 40 m around the Island and the many collections made, which resulted in vouchers deposited in the AZB Herbarium Ruy Telles Palhinha and the LSM- Molecular Systematics Laboratory at the Faculty of Sciences and Technology of the University of the Azores.The present publication lists the macroalgal taxonomic records, together with information on their ecology and occurrence around São Miguel Island, improving the knowledge of the Azorean macroalgal flora at local and regional scales. NEW INFORMATION: A total of 12,781 specimens (including some identified only to genus) belonging to 431 taxa of macroalgae are registered, comprising 284 Rhodophyta, 59 Chlorophyta and 88 Ochrophyta (Phaeophyceae). Of these, 323 were identified to species level (212 Rhodophyta, 48 Chlorophyta and 63 Ochrophyta), of which 61 are new records for the Island (42 Rhodophyta, 9 Chlorophyta and 10 Ochrophyta), one an Azorean endemic (Predaea feldmannii subsp. azorica Gabriel), five are Macaronesian endemisms (the red algae Botryocladia macaronesica Afonso-Carrillo, Sobrino, Tittley & Neto, Laurencia viridis Gil-Rodríguez & Haroun, Millerella tinerfensis (Seoane-Camba) S.M.Boo & J.M.Rico, Phyllophora gelidioides P.Crouan & H.Crouan ex Karsakoff and the green alga Codium elisabethiae O.C.Schmidt), 19 are introduced species (15 Rhodophyta, two Chlorophyta and two Ochrophyta) and 32 are of uncertain status (21 Rhodophyta, five Chlorophyta and six Ochrophyta).

14.
PLoS One ; 15(10): e0239895, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33002046

RESUMEN

Knowledge of continental shelf faunal biodiversity of Antarctica is patchy and as such, the ecology of this unique ecosystem is not fully understood. To this end, we deployed baited cameras at 20 locations along ~ 500 km of the Western Antarctic Peninsula (WAP) at depths from 90 to 797 m. We identified 111 unique taxa, with mud bottom accounting for 90% of the dominant (≥ 50% cover) habitat sampled. Amphipoda comprised 41% of the total maximum number of individuals per camera deployment (MaxN) and occurred on 75% of deployments. Excluding this taxon, the highest MaxN occurred around King George/25 de Mayo Island and was driven primarily by the abundance of krill (Euphausiidae), which accounted for 36% of total average MaxN among deployments around this island. In comparison, krill comprised 22% of total average MaxN at Deception Island and only 10% along the peninsula. Taxa richness, diversity, and evenness all increased with depth and depth explained 18.2% of the variation in community structure among locations, which may be explained by decreasing ice scour with depth. We identified a number of Vulnerable Marine Ecosystem taxa, including habitat-forming species of cold-water corals and sponge fields. Channichthyidae was the most common fish family, occurring on 80% of all deployments. The Antarctic jonasfish (Notolepis coatsorum) was the most frequently encountered fish taxa, occurring on 70% of all deployments and comprising 25% of total MaxN among all deployments. Nototheniidae was the most numerically abundant fish family, accounting for 36% of total MaxN and was present on 70% of the deployments. The WAP is among the fastest warming regions on Earth and mitigating the impacts of warming, along with more direct impacts such as those from fishing, is critical in providing opportunities for species to adapt to environmental change and to preserve this unique ecosystem.


Asunto(s)
Biodiversidad , Ambientes Extremos , Animales , Regiones Antárticas , Antozoos/fisiología , Peces/fisiología , Poríferos/fisiología , Agua de Mar
15.
Sci Rep ; 10(1): 17825, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33082390

RESUMEN

Marine macroalgal forests are highly productive and iconic ecosystems, which are seriously threatened by number of factors such as habitat destruction, overgrazing, ocean warming, and pollution. The effect of chronic, but low levels of pollutants on the long-term survival of the canopy-forming algae is not well understood. Here we test the effects of low concentrations (found in good quality water-bodies) of nitrates, heavy metals copper (Cu) and lead (Pb), and herbicides (glyphosate) on both adults and recruits of Carpodesmia crinita, a Mediterranean canopy forming macroalga. We show that although adult biomass, height and photosynthetic yield remain almost unaffected in all the assays, low Cu levels of 30 µg/L completely suppress adult fertility. In addition, all the assays have a strong and negative impact on the survival and growth of recruits; in particular, glyphosate concentrations above 1 µg/L almost totally inhibit their survival. These results suggest that the long-term viability of C. crinita may be severely compromised by low pollutant levels that are not affecting adult specimens. Our results provide important data for a better understanding of the present-day threats to marine canopy-forming macroalgae and for the design of future management actions aimed at preserving macroalgal forests.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Contaminantes Ambientales/toxicidad , Biología Marina , Algas Marinas/efectos de los fármacos , Biomasa , Fotosíntesis , Algas Marinas/fisiología
16.
Mar Pollut Bull ; 157: 111356, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32658705

RESUMEN

The cartography of shallow water macroalgal assemblages allows the assessment of water quality in coastal water bodies through the application of CARLIT. In this study, we have applied CARLIT to assess the ecological status of Algerian coastal water bodies for the first time. The surveyed zone is still in a good ecological status since 52% have a good to a high ecological Status. CARLIT index is well correlated with anthropogenic pressures and has proved suitable for the evaluation of the ecological status of coastal waters. Comparison between EQR values and EEI-c shows a similar pattern of change. CARLIT method allowed the collection of accurate information on the distribution and abundance of shallow-water communities. We also provide a cartographic baseline of the coastal assemblages useful for further evaluations on their geographic extension and for the implementation of a monitoring project on water quality in Algerian coast.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Argelia , Mar Mediterráneo , Calidad del Agua
17.
PLoS One ; 15(3): e0229259, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32160219

RESUMEN

The kelp forests of southern South America are some of the least disturbed on the planet. The remoteness of this region has, until recently, spared it from many of the direct anthropogenic stressors that have negatively affected these ecosystems elsewhere. Re-surveys of 11 locations at the easternmost extent of Tierra del Fuego originally conducted in 1973 showed no significant differences in the densities of adult and juvenile Macrocystis pyrifera kelp or kelp holdfast diameter between the two survey periods. Additionally, sea urchin assemblage structure at the same sites were not significantly different between the two time periods, with the dominant species Loxechinus albus accounting for 66.3% of total sea urchin abundance in 2018 and 61.1% in 1973. Time series of Landsat imagery of the region from 1998 to 2018 showed no long-term trends in kelp canopy over the past 20 years. However, ~ 4-year oscillations in canopy fraction were observed and were strongly and negatively correlated with the NOAA Multivariate ENSO index and sea surface temperature. More extensive surveying in 2018 showed significant differences in benthic community structure between exposed and sheltered locations. Fish species endemic to the Magellanic Province accounted for 73% of all nearshore species observed and from 98-100% of the numerical abundance enumerated at sites. Fish assemblage structure varied significantly among locations and wave exposures. The recent creation of the Yaganes Marine Park is an important step in protecting this unique and biologically rich region; however, the nearshore waters of the region are currently not included in this protection. There is a general lack of information on changes in kelp forests over long time periods, making a global assessment difficult. A complete picture of how these ecosystems are responding to human pressures must also include remote locations and locations with little to no impact.


Asunto(s)
Cambio Climático , Peces/fisiología , Cadena Alimentaria , Macrocystis/fisiología , Océanos y Mares , Erizos de Mar/fisiología , Animales , América del Sur , Temperatura
18.
Sci Rep ; 9(1): 13355, 2019 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-31527825

RESUMEN

A mass mortality event is devastating the populations of the endemic bivalve Pinna nobilis in the Mediterranean Sea from early autumn 2016. A newly described Haplosporidian endoparasite (Haplosporidium pinnae) is the most probable cause of this ecological catastrophe placing one of the largest bivalves of the world on the brink of extinction. As a pivotal step towards Pinna nobilis conservation, this contribution combines scientists and citizens' data to address the fast- and vast-dispersion and prevalence outbreaks of the pathogen. Therefore, the potential role of currents on parasite expansion was addressed by means of drift simulations of virtual particles in a high-resolution regional currents model. A generalized additive model was implemented to test if environmental factors could modulate the infection of Pinna nobilis populations. The results strongly suggest that the parasite has probably dispersed regionally by surface currents, and that the disease expression seems to be closely related to temperatures above 13.5 °C and to a salinity range between 36.5-39.7 psu. The most likely spread of the disease along the Mediterranean basin associated with scattered survival spots and very few survivors (potentially resistant individuals), point to a challenging scenario for conservation of the emblematic Pinna nobilis, which will require fast and strategic management measures and should make use of the essential role citizen science projects can play.


Asunto(s)
Bivalvos/parasitología , Brotes de Enfermedades/veterinaria , Haplosporidios/crecimiento & desarrollo , Infecciones Protozoarias en Animales/epidemiología , Animales , Ecosistema , Ambiente , Haplosporidios/clasificación , Mar Mediterráneo/epidemiología , Filogenia , Infecciones Protozoarias en Animales/parasitología , Salinidad , Temperatura
19.
PeerJ ; 7: e7279, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31341739

RESUMEN

Clipperton Atoll (Île de La Passion) is the only atoll in the Tropical Eastern Pacific (TEP) ecoregion and, owing to its isolation, possesses several endemic species and is likely an important stepping stone between Oceania, the remainder of the TEP, including other oceanic islands and the west coast of Central America. We describe the biodiversity at this remote atoll from shallow water to depths greater than one thousand meters using a mixture of technologies (SCUBA, stereo baited remote underwater video stations, manned submersible, and deep-sea drop cameras). Seventy-four unique taxa of invertebrates were identified during our expedition. The majority (70%) of these taxa were confined to the top 400 m and consisted mostly of sessile organisms. Decapod crustaceans and black corals (Antipatharia) had the broadest depth ranges, 100-1,497 m and 58-967 m, respectively. Decapods were correlated with the deepest depths, while hard corals were correlated with the shallow depths. There were 96 different fish taxa from 41 families and 15 orders, of which 70% were restricted to depths <200 m. While there was a decreasing trend in richness for both fish and invertebrate taxa with depth, these declines were not linear across the depth gradient. Instead, peaks in richness at ∼200 m and ∼750 m coincided with high turnover due to the appearance of new taxa and disappearance of other taxa within the community and is likely associated with the strong oxygen minimum zone that occurs within the region. The overall depth effect was stronger for fishes compared with invertebrates, which may reflect ecological preferences or differences in taxonomic resolution among groups. The creation of a no-take marine reserve 12 nautical miles around the atoll in 2016 will help conserve this unique and relatively intact ecosystem, which possesses high predator abundance.

20.
Sci Rep ; 9(1): 5911, 2019 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-30976028

RESUMEN

Stochastic perturbations can trigger major ecosystem shifts. Marine systems have been severely affected in recent years by mass mortality events related to positive thermal anomalies. Although the immediate effects in the species demography affected by mortality events are well known, information on the mid- to long-term effects at the community level is much less documented. Here, we show how an extreme warming event replaces a structurally complex habitat, dominated by long-lived species, by a simplified habitat (lower species diversity and richness) dominated by turf-forming species. On the basis of a study involving the experimental manipulation of the presence of the gorgonian Paramuricea clavata, we observed that its presence mitigated the effects of warming by maintaining the original assemblage dominated by macroinvertebrates and delaying the proliferation and spread of the invasive alga Caulerpa cylindracea. However, due to the increase of sediment and turf-forming species after the mortality event we hypothesize a further degradation of the whole assemblage as both factors decrease the recruitment of P.clavata, decrease the survival of encrusting coralligenous-dwelling macroinvertebrates and facilitate the spreading of C. cylindracea.


Asunto(s)
Antozoos/crecimiento & desarrollo , Biodiversidad , Bioingeniería , Caulerpa/patogenicidad , Calor , Longevidad , Dinámica Poblacional , Animales , Antozoos/microbiología , Mar Mediterráneo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...