Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Cardiovasc Res ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722821
2.
Clin Biochem ; 124: 110707, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38182100

RESUMEN

Atorvastatin (ATV) and other statins are highly effective in reducing cholesterol levels. However, in some patients, the development of drug-associated muscle side effects remains an issue as it compromises the adherence to treatment. Since the toxicity is dose-dependent, exploring factors modulating pharmacokinetics (PK) appears fundamental. The purpose of this review aims at reporting the current state of knowledge about the singular genetic susceptibilities influencing the risk of developing ATV muscle adverse events through PK modulations. Multiple single nucleotide polymorphisms (SNP) in efflux (ABCB1, ABCC1, ABCC2, ABCC4 and ABCG2) and influx (SLCO1B1, SLCO1B3 and SLCO2B1) transporters have been explored for their association with ATV PK modulation or with statin-related myotoxicities (SRM) development. The most convincing pharmacogenetic association with ATV remains the influence of the rs4149056 (c.521 T > C) in SLCO1B1 on ATV PK and pharmacodynamics. This SNP has been robustly associated with increased ATV systemic exposure and consequently, an increased risk of SRM. Additionally, the SNP rs2231142 (c.421C > A) in ABCG2 has also been associated with increased drug exposure and higher risk of SRM occurrence. SLCO1B1 and ABCG2 pharmacogenetic associations highlight that modulation of ATV systemic exposure is important to explain the risk of developing SRM. However, some novel observations credit the hypothesis that additional genes (e.g. SLCO2B1 or ABCC1) might be important for explaining local PK modulations within the muscle tissue, indicating that studying the local PK directly at the skeletal muscle level might pave the way for additional understanding.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Farmacogenética , Humanos , Atorvastatina/efectos adversos , Atorvastatina/farmacocinética , Estudios de Factibilidad , Toxicocinética , Inhibidores de Hidroximetilglutaril-CoA Reductasas/efectos adversos , Polimorfismo de Nucleótido Simple , Transportador 1 de Anión Orgánico Específico del Hígado/genética
3.
Expert Rev Clin Pharmacol ; 16(11): 1073-1084, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37728503

RESUMEN

INTRODUCTION: Few agonists of the third isotype of beta-adrenergic receptors, the ß3-adrenoreceptor, are currently used clinically, and new agonists are under development for the treatment of overactive bladder disease. As the receptor is expressed in human cardiac and vascular tissues, it is important to understand their beneficial (or adverse) effect(s) on these targets. AREAS COVERED: We discuss the most recent results of clinical trials testing the benefit and safety of ß3-adrenoreceptor activation on cardiovascular outcomes in light of current knowledge on the receptor biology, genetic polymorphisms, and agonist pharmacology. EXPERT OPINION: While evidence from small clinical trials is limited so far, the ß3-agonist, mirabegron seems to be safe in patients at high cardiovascular risk but produces benefits on selected cardiovascular outcomes only at higher than standard doses. Activation of cardiovascular ß3-adrenoreceptors deserves to be tested with more potent agonists, such as vibegron.


Asunto(s)
Enfermedades Cardiovasculares , Vejiga Urinaria Hiperactiva , Humanos , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/inducido químicamente , Agonistas de Receptores Adrenérgicos beta 3/efectos adversos , Vejiga Urinaria Hiperactiva/tratamiento farmacológico , Acetanilidas/efectos adversos
4.
JAMA Cardiol ; 8(11): 1031-1040, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37728907

RESUMEN

Importance: Left ventricular (LV) hypertrophy contributes to the onset and progression of heart failure (HF), particularly for patients with pre-HF (stage B) for whom no treatment has yet proven effective to prevent transition to overt HF (stage C). The ß3-adrenergic receptors (ß3ARs) may represent a new target, as their activation attenuates LV remodeling. Objective: To determine whether activation of ß3ARs by repurposing a ß3AR agonist, mirabegron, is safe and effective in preventing progression of LV hypertrophy and diastolic dysfunction among patients with pre- or mild HF. Design, Setting, and Participants: The Beta3-LVH prospective, triple-blind, placebo-controlled phase 2b randomized clinical trial enrolled patients between September 12, 2016, and February 26, 2021, with a follow-up of 12 months. The trial was conducted at 10 academic hospitals in 8 countries across Europe (Germany, Poland, France, Belgium, Italy, Portugal, Greece, and the UK). Patients aged 18 years or older with or without HF symptoms (maximum New York Heart Association class II) were screened for the presence of LV hypertrophy (increased LV mass index [LVMI] of ≥95 g/m2 for women or ≥115 g/m2 for men) or maximum wall thickness of 13 mm or greater using echocardiography. Data analysis was performed in August 2022. Intervention: Participants were randomly assigned (1:1) to mirabegron (50 mg/d) or placebo, stratified by the presence of atrial fibrillation and/or type 2 diabetes, for 12 months. Main Outcomes and Measures: The primary end points were LVMI determined using cardiac magnetic resonance imaging and LV diastolic function (early diastolic tissue Doppler velocity [E/e'] ratio assessed using Doppler echocardiography) at 12 months. Patients with at least 1 valid measurement of either primary end point were included in the primary analysis. Safety was assessed for all patients who received at least 1 dose of study medication. Results: Of the 380 patients screened, 296 were enrolled in the trial. There were 147 patients randomized to mirabegron (116 men [79%]; mean [SD] age, 64.0 [10.2] years) and 149 to placebo (112 men [75%]; mean [SD] age, 62.2 [10.9] years). All patients were included in the primary intention-to-treat analysis. At 12 months, the baseline and covariate-adjusted differences between groups included a 1.3-g/m2 increase in LVMI (95% CI, -0.15 to 2.74; P = .08) and a -0.15 decrease in E/e' (95% CI, -0.69 to 0.4; P = .60). A total of 213 adverse events (AEs) occurred in 82 mirabegron-treated patients (including 31 serious AEs in 19 patients) and 215 AEs occurred in 88 placebo-treated patients (including 30 serious AEs in 22 patients). No deaths occurred during the trial. Conclusions: In this study, mirabegron therapy had a neutral effect on LV mass or diastolic function over 12 months among patients who had structural heart disease with no or mild HF symptoms. Trial Registration: ClinicalTrials.gov Identifier: NCT02599480.


Asunto(s)
Diabetes Mellitus Tipo 2 , Insuficiencia Cardíaca , Femenino , Humanos , Masculino , Persona de Mediana Edad , Agonistas Adrenérgicos/uso terapéutico , Insuficiencia Cardíaca/tratamiento farmacológico , Hipertrofia Ventricular Izquierda , Estudios Prospectivos , Anciano
5.
Transplant Direct ; 9(9): e1531, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37636484

RESUMEN

Background: Donor safety is paramount in living organ donation. Left liver resections are considered safer than right lobe hepatectomies. However, unexpected intraoperative adverse events (iAEs), defined as any deviation from the ideal intraoperative course, can also occur during left liver resections and may be life threatening or lead to postoperative complication or permanent harm to the donor and recipient. Methods: Records of 438 liver living donors (LDs) who underwent 393 left lateral sectionectomies (LLSs) and 45 left hepatectomies (LHs) between July 1993 and December 2018 in a pediatric living-donor liver transplantation center were reviewed for the appearance of iAEs that could have influenced the donor morbidity and mortality and that could have contributed to the improvement of the LD surgical protocol. Results: Clinical characteristics of LLS and LH groups were comparable. Nine iAEs were identified, an incidence of 2%, all of them occurring in the LLS group. Seven of them were related to a surgical maneuver (5 associated with vascular management and 2 with the biliary tree approach). One iAE was associated with an incomplete donor workup and the last with drug administration. Each iAE resulted in subsequent changes in the surgical protocol. Donor outcome was at risk by 5 iAEs classed as type a, recipient outcome by 2 iAEs (type b) and both by 2 iAEs (type c). Postoperative complications occurred in 87 LDs (19.9%), with no differences between the LLS and LH groups (P = 0.227). No Clavien-Dindo class IVa or b complications or donor mortality (Clavien-Dindo class V) were observed. Conclusions: iAEs debriefings induced changes in our LD protocol and may have contributed to reduced morbidity and zero mortality. iAEs analysis can be used as a quality and safety improvement tool in the context of LD procedures, which may include right liver donation, laparoscopic, and robotic living liver graft procurement.

6.
Hum Genomics ; 17(1): 24, 2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36941667

RESUMEN

BACKGROUND: Moyamoya angiopathy (MMA) is a rare cerebrovascular condition leading to stroke. Mutations in 15 genes have been identified in Mendelian forms of MMA, but they explain only a very small proportion of cases. Our aim was to investigate the genetic basis of MMA in consanguineous patients having unaffected parents in order to identify genes involved in autosomal recessive MMA. METHODS: Exome sequencing (ES) was performed in 6 consecutive consanguineous probands having MMA of unknown etiology. Functional consequences of variants were assessed using western blot and protein 3D structure analyses. RESULTS: Causative homozygous variants of NOS3, the gene encoding the endothelial nitric oxide synthase (eNOS), and GUCY1A3, the gene encoding the alpha1 subunit of the soluble guanylate cyclase (sGC) which is the major nitric oxide (NO) receptor in the vascular wall, were identified in 3 of the 6 probands. One NOS3 variant (c.1502 + 1G > C) involves a splice donor site causing a premature termination codon and leads to a total lack of eNOS in endothelial progenitor cells of the affected proband. The other NOS3 variant (c.1942 T > C) is a missense variant located into the flavodoxine reductase domain; it is predicted to be destabilizing and shown to be associated with a reduction of eNOS expression. The GUCY1A3 missense variant (c.1778G > A), located in the catalytic domain of the sGC, is predicted to disrupt the tridimensional structure of this domain and to lead to a loss of function of the enzyme. Both NOS3 mutated probands suffered from an infant-onset and severe MMA associated with posterior cerebral artery steno-occlusive lesions. The GUCY1A3 mutated proband presented an adult-onset MMA associated with an early-onset arterial hypertension and a stenosis of the superior mesenteric artery. None of the 3 probands had achalasia. CONCLUSIONS: We show for the first time that biallelic loss of function variants in NOS3 is responsible for MMA and that mutations in NOS3 and GUCY1A3 are causing fifty per cent of MMA in consanguineous patients. These data pinpoint the essential role of the NO pathway in MMA pathophysiology.


Asunto(s)
Enfermedad de Moyamoya , Óxido Nítrico Sintasa de Tipo III , Óxido Nítrico , Guanilil Ciclasa Soluble , Adulto , Humanos , Enfermedad de Moyamoya/genética , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Transducción de Señal/genética , Guanilil Ciclasa Soluble/genética
7.
Molecules ; 27(22)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36432022

RESUMEN

Nitric oxide (NO) is implicated in numerous physiological processes, including vascular homeostasis. Reduced NO bioavailability is a hallmark of endothelial dysfunction, a prequel to many cardiovascular diseases. Biomarkers of an early NO-dependent endothelial dysfunction obtained from routine venous blood sampling would be of great interest but are currently lacking. The direct measurement of circulating NO remains a challenge due by its high reactivity and short half-life. The current techniques measure stable products from the NO signaling pathway or metabolic end products of NO that do not accurately represent its bioavailability and, therefore, endothelial function per se. In this review, we will concentrate on an original technique of low temperature electron paramagnetic resonance spectroscopy capable to directly measure the 5-α-coordinated heme nitrosyl-hemoglobin in the T (tense) state (5-α-nitrosyl-hemoglobin or HbNO) obtained from fresh venous human erythrocytes. In humans, HbNO reflects the bioavailability of NO formed in the vasculature from vascular endothelial NOS or exogenous NO donors with minor contribution from erythrocyte NOS. The HbNO signal is directly correlated with the vascular endothelial function and inversely correlated with vascular oxidative stress. Pilot studies support the validity of HbNO measurements both for the detection of endothelial dysfunction in asymptomatic subjects and for the monitoring of such dysfunction in patients with known cardiovascular disease. The impact of therapies or the severity of diseases such as COVID-19 infection involving the endothelium could also be monitored and their incumbent risk of complications better predicted through serial measurements of HbNO.


Asunto(s)
COVID-19 , Óxido Nítrico , Humanos , Óxido Nítrico/metabolismo , Hemoglobinas/metabolismo , Endotelio Vascular/metabolismo
8.
Viruses ; 14(7)2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35891354

RESUMEN

More than two years on, the COVID-19 pandemic continues to wreak havoc around the world and has battle-tested the pandemic-situation responses of all major global governments. Two key areas of investigation that are still unclear are: the molecular mechanisms that lead to heterogenic patient outcomes, and the causes of Post COVID condition (AKA Long-COVID). In this paper, we introduce the HYGIEIA project, designed to respond to the enormous challenges of the COVID-19 pandemic through a multi-omic approach supported by network medicine. It is hoped that in addition to investigating COVID-19, the logistics deployed within this project will be applicable to other infectious agents, pandemic-type situations, and also other complex, non-infectious diseases. Here, we first look at previous research into COVID-19 in the context of the proteome, metabolome, transcriptome, microbiome, host genome, and viral genome. We then discuss a proposed methodology for a large-scale multi-omic longitudinal study to investigate the aforementioned biological strata through high-throughput sequencing (HTS) and mass-spectrometry (MS) technologies. Lastly, we discuss how a network medicine approach can be used to analyze the data and make meaningful discoveries, with the final aim being the translation of these discoveries into the clinics to improve patient care.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , COVID-19/complicaciones , COVID-19/epidemiología , Enfermedades Transmisibles/epidemiología , Humanos , Estudios Longitudinales , Metabolómica/métodos , Pandemias , Biología de Sistemas/métodos , Síndrome Post Agudo de COVID-19
9.
Front Cardiovasc Med ; 9: 854361, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35360022

RESUMEN

Background: Activation of the renin-angiotensin-aldosterone system (RAAS) plays a critical role in the development of hypertension. Published evidence on a putative "memory effect" of AngII on the vascular components is however scarce. Aim: To evaluate the long-term effects of transient exposure to AngII on the mouse heart and the arterial tissue. Methods: Blood pressure, cardiovascular tissue damage and remodeling, and systemic oxidative stress were evaluated in C57/B6/J mice at the end of a 2-week AngII infusion (AngII); 2 and 3 weeks after the interruption of a 2-week AngII treatment (AngII+2W and AngII +3W; so-called "memory" conditions) and control littermate (CTRL). RNAseq profiling of aortic tissues was used to identify potential key regulated genes accounting for legacy effects on the vascular phenotype. RNAseq results were validated by RT-qPCR and immunohistochemistry in a reproduction cohort of mice. Key findings were reproduced in a homotypic cell culture model. Results: The 2 weeks AngII infusion induced cardiac hypertrophy and aortic damage that persisted beyond AngII interruption and despite blood pressure normalization, with a sustained vascular expression of ICAM1, infiltration by CD45+ cells, and cell proliferation associated with systemic oxidative stress. RNAseq profiling in aortic tissue identified robust Acta2 downregulation at transcript and protein levels (α-smooth muscle actin) that was maintained beyond interruption of AngII treatment. Among regulators of Acta2 expression, the transcription factor Myocardin (Myocd), exhibited a similar expression pattern. The sustained downregulation of Acta2 and Myocd was associated with an increase in H3K27me3 in nuclei of aortic sections from mice in the "memory" conditions. A sustained downregulation of ACTA2 and MYOCD was reproduced in the cultured human aortic vascular smooth muscle cells upon transient exposure to Ang II. Conclusion: A transient exposure to Ang II produces prolonged vascular remodeling with robust ACTA2 downregulation, associated with epigenetic imprinting supporting a "memory" effect despite stimulus withdrawal.

10.
EBioMedicine ; 77: 103893, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35219085

RESUMEN

BACKGROUND: SARS-CoV-2 targets endothelial cells through the angiotensin-converting enzyme 2 receptor. The resulting endothelial injury induces widespread thrombosis and microangiopathy. Nevertheless, early specific markers of endothelial dysfunction and vascular redox status in COVID-19 patients are currently missing. METHODS: Observational study including ICU and non-ICU adult COVID-19 patients admitted in hospital for acute respiratory failure, compared with control subjects matched for cardiovascular risk factors similar to ICU COVID-19 patients, and ICU septic shock patients unrelated to COVID-19. FINDINGS: Early SARS-CoV-2 infection was associated with an imbalance between an exacerbated oxidative stress (plasma peroxides levels in ICU patients vs. controls: 1456.0 ± 400.2 vs 436 ± 272.1 mmol/L; P < 0.05) and a reduced nitric oxide bioavailability proportional to disease severity (5-α-nitrosyl-hemoglobin, HbNO in ICU patients vs. controls: 116.1 ± 62.1 vs. 163.3 ± 46.7 nmol/L; P < 0.05). HbNO levels correlated with oxygenation parameters (PaO2/FiO2 ratio) in COVID-19 patients (R2 = 0.13; P < 0.05). Plasma levels of angiotensin II, aldosterone, renin or serum level of TREM-1 ruled out any hyper-activation of the renin-angiotensin-aldosterone system or leucocyte respiratory burst in ICU COVID-19 patients, contrary to septic patients. INTERPRETATION: Endothelial oxidative stress with ensuing decreased NO bioavailability appears as a likely pathogenic factor of endothelial dysfunction in ICU COVID-19 patients. A correlation between NO bioavailability and oxygenation parameters is observed in hospitalized COVID-19 patients. These results highlight an urgent need for oriented research leading to a better understanding of the specific endothelial oxidative stress that occurs during SARS-CoV-2. FUNDING: Stated in the acknowledgments section.


Asunto(s)
COVID-19 , Adulto , Células Endoteliales , Humanos , Óxido Nítrico , Estrés Oxidativo , SARS-CoV-2
12.
Clin Transl Sci ; 15(3): 667-679, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34761521

RESUMEN

The purpose of this study was to investigate the potential clinical relevance of estimating the apparent clearance (CL/F) of atorvastatin through population pharmacokinetic (PopPK) modeling with samples collected in a real-life setting in a cohort of ambulatory patients at risk of cardiovascular disease by using an opportunistic sampling strategy easily accessible in clinical routine. A total of 132 pharmacokinetic (PK) samples at a maximum of three visits were collected in the 70 included patients. The effects of demographic, genetic, and clinical covariates were also considered. With the collected data, we developed a two-compartment PopPK model that allowed estimating atorvastatin CL/F relatively precisely and considering the genotype of the patient for SLCO1B1 c.521T>C single-nucleotide polymorphism (SNP). Our results indicate that the estimation of the CL/F of atorvastatin through our PopPK model might help in identifying patients at risk of myalgia. Indeed, we showed that a patient presenting a CL/F lower than 414.67 L h-1 is at risk of suffering from muscle discomfort. We also observed that the CL/F was correlated with the efficacy outcomes, suggesting that a higher CL/F is associated with a better drug efficacy (i.e., a greater decrease in total and LDL-cholesterol levels). In conclusion, our study demonstrates that PopPK modeling can be useful in daily clinics to estimate a patient' atorvastatin clearance. Notifying the clinician with this information can help in identifying patients at risk of myalgia and gives indication about the potential responsiveness to atorvastatin therapy.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Atorvastatina/farmacocinética , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Transportador 1 de Anión Orgánico Específico del Hígado/genética , Mialgia/inducido químicamente , Mialgia/tratamiento farmacológico , Polimorfismo de Nucleótido Simple
13.
Antioxidants (Basel) ; 10(11)2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34829720

RESUMEN

In medicine, a legacy effect is defined as the sustained beneficial effect of a given treatment on disease outcomes, even after cessation of the intervention. Initially described in optimized control of diabetes, it was also observed in clinical trials exploring intensification strategies for other cardiovascular risk factors, such as hypertension or hypercholesterolemia. Mechanisms of legacy were particularly deciphered in diabetes, leading to the concept of metabolic memory. In a more discreet manner, other memory phenomena were also described in preclinical studies that demonstrated long-lasting deleterious effects of lipids or angiotensin II on vascular wall components. Interestingly, epigenetic changes and reactive oxygen species (ROS) appear to be common features of "memory" of the vascular wall.

14.
N Engl J Med ; 385(17): 1570-1580, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34670044

RESUMEN

BACKGROUND: Variability in ultrafiltration influences prescriptions and outcomes in patients with kidney failure who are treated with peritoneal dialysis. Variants in AQP1, the gene that encodes the archetypal water channel aquaporin-1, may contribute to that variability. METHODS: We gathered clinical and genetic data from 1851 patients treated with peritoneal dialysis in seven cohorts to determine whether AQP1 variants were associated with peritoneal ultrafiltration and with a risk of the composite of death or technique failure (i.e., transfer to hemodialysis). We performed studies in cells, mouse models, and samples obtained from humans to characterize an AQP1 variant and investigate mitigation strategies. RESULTS: The common AQP1 promoter variant rs2075574 was associated with peritoneal ultrafiltration. Carriers of the TT genotype at rs2075574 (10 to 16% of patients) had a lower mean (±SD) net ultrafiltration level than carriers of the CC genotype (35 to 47% of patients), both in the discovery phase (506±237 ml vs. 626±283 ml, P = 0.007) and in the validation phase (368±603 ml vs. 563±641 ml, P = 0.003). After a mean follow-up of 944 days, 139 of 898 patients (15%) had died and 280 (31%) had been transferred to hemodialysis. TT carriers had a higher risk of the composite of death or technique failure than CC carriers (adjusted hazard ratio, 1.70; 95% confidence interval [CI], 1.24 to 2.33; P = 0.001), as well as a higher risk of death from any cause (24% vs. 15%, P = 0.03). In mechanistic studies, the rs2075574 risk variant was associated with decreases in AQP1 promoter activity, aquaporin-1 expression, and glucose-driven osmotic water transport. The use of a colloid osmotic agent mitigated the effects of the risk variant. CONCLUSIONS: A common variant in AQP1 was associated with decreased ultrafiltration and an increased risk of death or technique failure among patients treated with peritoneal dialysis. (Funded by the Swiss National Science Foundation and others.).


Asunto(s)
Acuaporina 1/genética , Transporte Biológico/genética , Variación Genética , Diálisis Peritoneal , Insuficiencia Renal/terapia , Agua/metabolismo , Animales , Acuaporina 1/metabolismo , Transporte Biológico/fisiología , Femenino , Genotipo , Humanos , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Modelos Animales , Ósmosis , Insuficiencia Renal/genética , Insuficiencia Renal/mortalidad , Factores de Riesgo , Transcripción Genética , Insuficiencia del Tratamiento
15.
PLoS One ; 16(8): e0255335, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34347801

RESUMEN

The SARS-CoV-2 coronavirus has led to a pandemic with millions of people affected. The present study finds that risk-factors for severe COVID-19 disease courses, i.e. male sex, older age and sedentary life style are associated with higher prostaglandin E2 (PGE2) serum levels in blood samples from unaffected subjects. In COVID-19 patients, PGE2 blood levels are markedly elevated and correlate positively with disease severity. SARS-CoV-2 induces PGE2 generation and secretion in infected lung epithelial cells by upregulating cyclo-oxygenase (COX)-2 and reducing the PG-degrading enzyme 15-hydroxyprostaglandin-dehydrogenase. Also living human precision cut lung slices (PCLS) infected with SARS-CoV-2 display upregulated COX-2. Regular exercise in aged individuals lowers PGE2 serum levels, which leads to increased Paired-Box-Protein-Pax-5 (PAX5) expression, a master regulator of B-cell survival, proliferation and differentiation also towards long lived memory B-cells, in human pre-B-cell lines. Moreover, PGE2 levels in serum of COVID-19 patients lowers the expression of PAX5 in human pre-B-cell lines. The PGE2 inhibitor Taxifolin reduces SARS-CoV-2-induced PGE2 production. In conclusion, SARS-CoV-2, male sex, old age, and sedentary life style increase PGE2 levels, which may reduce the early anti-viral defense as well as the development of immunity promoting severe disease courses and multiple infections. Regular exercise and Taxifolin treatment may reduce these risks and prevent severe disease courses.


Asunto(s)
COVID-19/patología , Dinoprostona/sangre , Inmunidad , Adolescente , Adulto , Animales , COVID-19/sangre , COVID-19/inmunología , Estudios de Casos y Controles , Células Cultivadas , Chlorocebus aethiops , Dinoprostona/farmacología , Dinoprostona/fisiología , Progresión de la Enfermedad , Femenino , Humanos , Inmunidad/efectos de los fármacos , Inmunidad/fisiología , Masculino , Persona de Mediana Edad , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Células Vero , Adulto Joven
16.
Eur Heart J ; 42(43): 4493-4495, 2021 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-34463726
17.
Nutrients ; 13(2)2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33670720

RESUMEN

Alpha-linolenic acid (ALA), docosahexaenoic acid (DHA), rumenic acid (RmA), and punicic acid (PunA) are claimed to influence several physiological functions including insulin sensitivity, lipid metabolism and inflammatory processes. In this double-blind randomized controlled trial, we investigated the combined effect of ALA, DHA, RmA and PunA on subjects at risk of developing metabolic syndrome. Twenty-four women and men were randomly assigned to two groups. Each day, they consumed two eggs enriched with oleic acid (control group) or enriched with ALA, DHA, RmA, and PunA (test group) for 3 months. The waist circumference decreased significantly (-3.17 cm; p < 0.001) in the test group. There were no major changes in plasma insulin and blood glucose in the two groups. The dietary treatments had no significant effect on endothelial function as measured by peripheral arterial tonometry, although erythrocyte nitrosylated hemoglobin concentrations tended to decrease. The high consumption of eggs induced significant elevations in plasma low-density lipoprotein (LDL)- and high-density lipoprotein (HDL)-cholesterol (p < 0.001), which did not result in any change in the LDL/HDL ratio in both groups. These results indicate that consumption of eggs enriched with ALA, DHA, RmA and PunA resulted in favorable changes in abdominal obesity without affecting other factors of the metabolic syndrome.


Asunto(s)
Dieta/métodos , Huevos , Ácidos Grasos Insaturados/administración & dosificación , Alimentos Fortificados , Síndrome Metabólico/prevención & control , Obesidad Abdominal/dietoterapia , Adulto , Anciano , Factores de Riesgo Cardiometabólico , HDL-Colesterol/sangre , Ácidos Docosahexaenoicos/administración & dosificación , Método Doble Ciego , Femenino , Humanos , Ácidos Linoleicos Conjugados/administración & dosificación , Ácidos Linolénicos/administración & dosificación , Lipoproteínas LDL/sangre , Masculino , Síndrome Metabólico/etiología , Persona de Mediana Edad , Obesidad Abdominal/sangre , Obesidad Abdominal/complicaciones , Circunferencia de la Cintura , Ácido alfa-Linolénico/administración & dosificación
18.
Cardiovasc Res ; 117(11): 2294-2296, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-33772583

Asunto(s)
Corazón
19.
Basic Res Cardiol ; 116(1): 10, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33564961

RESUMEN

We have previously demonstrated that systemic AMP-activated protein kinase α1 (AMPKα1) invalidation enhanced adverse LV remodelling by increasing fibroblast proliferation, while myodifferentiation and scar maturation were impaired. We thus hypothesised that fibroblastic AMPKα1 was a key signalling element in regulating fibrosis in the infarcted myocardium and an attractive target for therapeutic intervention. The present study investigates the effects of myofibroblast (MF)-specific deletion of AMPKα1 on left ventricular (LV) adaptation following myocardial infarction (MI), and the underlying molecular mechanisms. MF-restricted AMPKα1 conditional knockout (cKO) mice were subjected to permanent ligation of the left anterior descending coronary artery. cKO hearts exhibit exacerbated post-MI adverse LV remodelling and are characterised by exaggerated fibrotic response, compared to wild-type (WT) hearts. Cardiac fibroblast proliferation and MF content significantly increase in cKO infarcted hearts, coincident with a significant reduction of connexin 43 (Cx43) expression in MFs. Mechanistically, AMPKα1 influences Cx43 expression by both a transcriptional and a post-transcriptional mechanism involving miR-125b-5p. Collectively, our data demonstrate that MF-AMPKα1 functions as a master regulator of cardiac fibrosis and remodelling and might constitute a novel potential target for pharmacological anti-fibrotic applications.


Asunto(s)
Proteínas Quinasas Activadas por AMP/deficiencia , Conexina 43/metabolismo , Infarto del Miocardio/enzimología , Miocardio/enzimología , Miofibroblastos/enzimología , Función Ventricular Izquierda , Remodelación Ventricular , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Proliferación Celular , Conexina 43/genética , Modelos Animales de Enfermedad , Femenino , Fibrosis , Eliminación de Gen , Células HEK293 , Humanos , Masculino , Ratones Noqueados , MicroARNs/genética , MicroARNs/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocardio/patología , Miofibroblastos/patología , Transducción de Señal
20.
PLoS Biol ; 18(12): e3000739, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33370269

RESUMEN

Cardiac levels of the signal transducer and activator of transcription factor-3 (STAT3) decline with age, and male but not female mice with a cardiomyocyte-specific STAT3 deficiency conditional knockout (CKO) display premature age-related heart failure associated with reduced cardiac capillary density. In the present study, isolated male and female CKO-cardiomyocytes exhibit increased prostaglandin (PG)-generating cyclooxygenase-2 (COX-2) expression. The PG-degrading hydroxyprostaglandin-dehydrogenase-15 (HPGD) expression is only reduced in male cardiomyocytes, which is associated with increased prostaglandin D2 (PGD2) secretion from isolated male but not female CKO-cardiomyocytes. Reduced HPGD expression in male cardiomyocytes derive from impaired androgen receptor (AR)-signaling due to loss of its cofactor STAT3. Elevated PGD2 secretion in males is associated with increased white adipocyte accumulation in aged male but not female hearts. Adipocyte differentiation is enhanced in isolated stem cell antigen-1 (SCA-1)+ cardiac progenitor cells (CPC) from young male CKO-mice compared with the adipocyte differentiation of male wild-type (WT)-CPC and CPC isolated from female mice. Epigenetic analysis in freshly isolated male CKO-CPC display hypermethylation in pro-angiogenic genes (Fgfr2, Epas1) and hypomethylation in the white adipocyte differentiation gene Zfp423 associated with up-regulated ZFP423 expression and a shift from endothelial to white adipocyte differentiation compared with WT-CPC. The expression of the histone-methyltransferase EZH2 is reduced in male CKO-CPC compared with male WT-CPC, whereas no differences in the EZH2 expression in female CPC were observed. Clonally expanded CPC can differentiate into endothelial cells or into adipocytes depending on the differentiation conditions. ZFP423 overexpression is sufficient to induce white adipocyte differentiation of clonal CPC. In isolated WT-CPC, PGD2 stimulation reduces the expression of EZH2, thereby up-regulating ZFP423 expression and promoting white adipocyte differentiation. The treatment of young male CKO mice with the COX inhibitor Ibuprofen or the PGD2 receptor (DP)2 receptor antagonist BAY-u 3405 in vivo increased EZH2 expression and reduced ZFP423 expression and adipocyte differentiation in CKO-CPC. Thus, cardiomyocyte STAT3 deficiency leads to age-related and sex-specific cardiac remodeling and failure in part due to sex-specific alterations in PGD2 secretion and subsequent epigenetic impairment of the differentiation potential of CPC. Causally involved is the impaired AR signaling in absence of STAT3, which reduces the expression of the PG-degrading enzyme HPGD.


Asunto(s)
Miocitos Cardíacos/metabolismo , Prostaglandina D2/metabolismo , Factor de Transcripción STAT3/metabolismo , Adipocitos Blancos/metabolismo , Animales , Diferenciación Celular/genética , Células Cultivadas , Ciclooxigenasa 2/metabolismo , Células Endoteliales/metabolismo , Femenino , Insuficiencia Cardíaca/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Madre Multipotentes/metabolismo , Prostaglandina D2/fisiología , Factor de Transcripción STAT3/genética , Transducción de Señal/genética , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...