Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Gen Virol ; 104(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37622664

RESUMEN

In April 2023, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by one new family, 14 new genera, and 140 new species. Two genera and 538 species were renamed. One species was moved, and four were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.


Asunto(s)
Virus ARN de Sentido Negativo , Virus ARN , Virus ARN/genética , ARN Polimerasa Dependiente del ARN/genética
2.
Front Microbiol ; 14: 1148263, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37275155

RESUMEN

Vertically transmitted (VT) microbial symbionts play a vital role in the evolution of their insect hosts. A longstanding question in symbiont research is what genes help promote long-term stability of vertically transmitted lifestyles. Symbiont success in insect hosts is due in part to expression of beneficial or manipulative phenotypes that favor symbiont persistence in host populations. In Spiroplasma, these phenotypes have been linked to toxin and virulence domains among a few related strains. However, these domains also appear frequently in phylogenetically distant Spiroplasma, and little is known about their distribution across the Spiroplasma genus. In this study, we present the complete genome sequence of the Spiroplasma symbiont of Drosophila atripex, a non-manipulating member of the Ixodetis clade of Spiroplasma, for which genomic data are still limited. We perform a genus-wide comparative analysis of toxin domains implicated in defensive and reproductive phenotypes. From 12 VT and 31 non-VT Spiroplasma genomes, ribosome-inactivating proteins (RIPs), OTU-like cysteine proteases (OTUs), ankyrins, and ETX/MTX2 domains show high propensity for VT Spiroplasma compared to non-VT Spiroplasma. Specifically, OTU and ankyrin domains can be found only in VT-Spiroplasma, and RIP domains are found in all VT Spiroplasma and three non-VT Spiroplasma. These domains are frequently associated with Spiroplasma plasmids, suggesting a possible mechanism for dispersal and maintenance among heritable strains. Searching insect genome assemblies available on public databases uncovered uncharacterized Spiroplasma genomes from which we identified several spaid-like genes encoding RIP, OTU, and ankyrin domains, suggesting functional interactions among those domain types. Our results suggest a conserved core of symbiont domains play an important role in the evolution and persistence of VT Spiroplasma in insects.

3.
Arch Virol ; 167(12): 2857-2906, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36437428

RESUMEN

In March 2022, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by two new families (bunyaviral Discoviridae and Tulasviridae), 41 new genera, and 98 new species. Three hundred forty-nine species were renamed and/or moved. The accidentally misspelled names of seven species were corrected. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.


Asunto(s)
Mononegavirales , Virus , Humanos , Mononegavirales/genética , Filogenia
4.
iScience ; 25(5): 104335, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35602967

RESUMEN

Cytoplasmic incompatibility (CI) is a form of reproductive manipulation caused by maternally inherited endosymbionts infecting arthropods, like Wolbachia, whereby matings between infected males and uninfected females produce few or no offspring. We report the discovery of a new CI symbiont, a strain of Spiroplasma causing CI in the parasitoid wasp Lariophagus distinguendus. Its extracellular occurrence enabled us to establish CI in uninfected adult insects by transferring Spiroplasma-infected hemolymph. We sequenced the CI-Spiroplasma genome and did not find any homologues of any of the cif genes discovered to cause CI in Wolbachia, suggesting independent evolution of CI. Instead, the genome contains other potential CI-causing candidate genes, such as homologues of high-mobility group (HMG) box proteins that are crucial in eukaryotic development but rare in bacterial genomes. Spiroplasma's extracellular nature and broad host range encompassing medically and agriculturally important arthropods make it a promising tool to study CI and its applications.

5.
Virus Evol ; 8(1): veac018, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35356639

RESUMEN

Inherited mutualists, parasites, and commensals occupy one of the most intimate ecological niches available to invertebrate-associated microbes. How this transmission environment influences microbial evolution is increasingly understood for inherited bacterial symbionts, but in viruses, research on the prevalence of vertical transmission and its effects on viral lineages is still maturing. The evolutionary stability of this strategy remains difficult to assess, although phylogenetic evidence of frequent host shifts and selective sweeps have been interpreted as strategies favoring parasite persistence. In this study, we describe and investigate a natural insect system in which species-wide sweeps have been restricted by the isolation of host populations. Previous work identified evidence of pronounced mitochondrial genetic structure among North American populations of the phantom midge, Chaoborus americanus. Here we take advantage of the geographical isolation in this species to investigate the diversity and persistence of its inherited virome. We identify eight novel RNA viruses from six families and use small RNA sequencing in reproductive tissues to provide evidence of vertical transmission. We report region-specific virus strains that mirror the continental phylogeography of the host, demonstrating that members of the inherited virome have independently persisted in parallel host lineages since they last shared a common ancestor in the Mid-Pleistocene. We find that the small interfering RNA pathway, a frontline of antiviral defense in insects, targets members of this inherited virome. Finally, our results suggest that the Piwi-mediated RNA silencing pathway is unlikely to function as a general antiviral defense in Chaoborus, in contrast to its role in some mosquitoes. However, we also report that this pathway generates abundant piRNAs from endogenous viral elements closely related to actively infecting inherited viruses, potentially helping to explain idiosyncratic patterns of virus-specific Piwi targeting in this insect.

7.
Arch Virol ; 166(12): 3513-3566, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34463877

RESUMEN

In March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, Myriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.


Asunto(s)
Mononegavirales , Virus , Humanos
8.
Arch Virol ; 165(12): 3023-3072, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32888050

RESUMEN

In March 2020, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. At the genus rank, 20 new genera were added, two were deleted, one was moved, and three were renamed. At the species rank, 160 species were added, four were deleted, ten were moved and renamed, and 30 species were renamed. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.


Asunto(s)
Mononegavirales/clasificación , Terminología como Asunto
9.
Virus Evol ; 5(2): vez017, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31308960

RESUMEN

How insects combat RNA virus infection is a subject of intensive research owing to its importance in insect health, virus evolution, and disease transmission. In recent years, a pair of potentially linked phenomena have come to light as a result of this work-first, the pervasive production of viral DNA from exogenous nonretroviral RNA in infected individuals, and second, the widespread distribution of nonretroviral integrated RNA virus sequences (NIRVs) in the genomes of diverse eukaryotes. The evolutionary consequences of NIRVs for viruses are unclear and the field would benefit from studies of natural virus infections co-occurring with recent integrations, an exceedingly rare circumstance in the literature. Here, we provide evidence that a novel insect-infecting phasmavirus (Order Bunyavirales) has been persisting in a phantom midge host, Chaoborus americanus, for millions of years. Interestingly, the infection persists despite the host's acquisition (during the Pliocene), fixation, and expression of the viral nucleoprotein gene. We show that virus prevalence and geographic distribution are high and broad, comparable to the host-specific infections reported in other phantom midges. Short-read mapping analyses identified a lower abundance of the nucleoprotein-encoding genome segment in this virus relative to related viruses. Finally, the novel virus has facilitated the first substitution rate estimation for insect-infecting phasmaviruses. Over a period of approximately 16 million years, we find rates of (0.6 - 1.6) × 10-7 substitutions per site per year in protein coding genes, extraordinarily low for negative-sense RNA viruses, but consistent with the few estimates produced over comparable evolutionary timescales.

10.
Arch Virol ; 164(7): 1949-1965, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31065850

RESUMEN

In February 2019, following the annual taxon ratification vote, the order Bunyavirales was amended by creation of two new families, four new subfamilies, 11 new genera and 77 new species, merging of two species, and deletion of one species. This article presents the updated taxonomy of the order Bunyavirales now accepted by the International Committee on Taxonomy of Viruses (ICTV).


Asunto(s)
Bunyaviridae/clasificación , Bunyaviridae/genética , Genoma Viral/genética , Filogenia , ARN Viral/genética
11.
Curr Opin Insect Sci ; 32: 36-41, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31113629

RESUMEN

Defensive microbes are of great interest for their roles in arthropod health, disease transmission, and biocontrol efforts. Obligate bacterial passengers of arthropods, such as Spiroplasma, confer protection against the natural enemies of their hosts to improve their own fitness. Although known for less than a decade, Spiroplasma's defensive reach extends to diverse parasites, both microbial and multicellular. We provide an overview of known defensive phenotypes against nematodes, parasitoid wasps, and fungi, and highlight recent studies supporting the role of Spiroplasma-encoded ribosome-inactivating proteins in protection. With cellular features well-suited for life in the hemolymph, broad distribution among invertebrate hosts, and the capacity to repeatedly evolve vertical transmission, Spiroplasma may be uniquely equipped to form intimate, defensive associations to combat extracellular parasites. Along with insights into defensive mechanisms, recent significant advances have been made in male-killing - a phenotype with interesting evolutionary ties to defense. Finally, we look forward to an exciting decade using the genetic tools of Drosophila, and the rapidly-advancing tractability of Spiroplasma itself, to better understand mechanisms and evolution in defensive symbiosis.


Asunto(s)
Artrópodos/microbiología , Artrópodos/parasitología , Spiroplasma/fisiología , Animales , Hongos , Nematodos , Saporinas , Simbiosis , Avispas
12.
Arch Virol ; 164(3): 927-941, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30663021

RESUMEN

In October 2018, the order Bunyavirales was amended by inclusion of the family Arenaviridae, abolishment of three families, creation of three new families, 19 new genera, and 14 new species, and renaming of three genera and 22 species. This article presents the updated taxonomy of the order Bunyavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV).


Asunto(s)
Arenaviridae/clasificación , Animales , Arenaviridae/genética , Arenaviridae/aislamiento & purificación , Infecciones por Arenaviridae/virología , Humanos , Filogenia
13.
Genome Biol Evol ; 11(1): 253-262, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30576446

RESUMEN

Defenses conferred by microbial symbionts play a vital role in the health and fitness of their animal hosts. An important outstanding question in the study of defensive symbiosis is what determines long term stability and effectiveness against diverse natural enemies. In this study, we combine genome and transcriptome sequencing, symbiont transfection and parasite protection experiments, and toxin activity assays to examine the evolution of the defensive symbiosis between Drosophila flies and their vertically transmitted Spiroplasma bacterial symbionts, focusing in particular on ribosome-inactivating proteins (RIPs), symbiont-encoded toxins that have been implicated in protection against both parasitic wasps and nematodes. Although many strains of Spiroplasma, including the male-killing symbiont (sMel) of Drosophila melanogaster, protect against parasitic wasps, only the strain (sNeo) that infects the mycophagous fly Drosophila neotestacea appears to protect against parasitic nematodes. We find that RIP repertoire is a major differentiating factor between strains that do and do not offer nematode protection, and that sMel RIPs do not show activity against nematode ribosomes in vivo. We also discovered a strain of Spiroplasma infecting a mycophagous phorid fly, Megaselia nigra. Although both the host and its Spiroplasma are distantly related to D. neotestacea and its symbiont, genome sequencing revealed that the M. nigra symbiont encodes abundant and diverse RIPs, including plasmid-encoded toxins that are closely related to the RIPs in sNeo. Our results suggest that distantly related Spiroplasma RIP toxins may perform specialized functions with regard to parasite specificity and suggest an important role for horizontal gene transfer in the emergence of novel defensive phenotypes.


Asunto(s)
Evolución Biológica , Drosophila/microbiología , Transferencia de Gen Horizontal , Interacciones Huésped-Parásitos/genética , Saporinas/genética , Spiroplasma/fisiología , Animales , Femenino , Genoma Bacteriano , Masculino , Rabdítidos , Saporinas/metabolismo , Especificidad de la Especie , Simbiosis , Transcriptoma
14.
PeerJ ; 6: e5679, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30280045

RESUMEN

DNA copies of many non-retroviral RNA virus genes or portions thereof (NIRVs) are present in the nuclear genomes of many eukaryotes. These have often been preserved for millions of years of evolution, suggesting that they play an important cellular function. One possible function is resistance to infection by related viruses. In some cases, this appears to occur through the piRNA system, but in others by way of counterfeit viral proteins encoded by NIRVs. In the fungi, NIRVs may be as long as 1,400 uninterrupted codons. In one such case in the yeast Debaryomyces hansenii, one of these genes provides immunity to a related virus by virtue of expression of a counterfeit viral capsid protein, which interferes with assembly of viral capsids by negative complementation. The widespread occurrence of non-retroviral RNA virus genes in eukaryotes may reflect an underappreciated method of host resistance to infection. This work demonstrates for the first time that an endogenous host protein encoded by a gene that has been naturally acquired from a virus and fixed in a eukaryote can interfere with the replication of a related virus and do so by negative complementation.

15.
Appl Environ Microbiol ; 84(4)2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29196290

RESUMEN

Microbial partners play important roles in the biology and ecology of animals. In insects, maternally transmitted symbionts are especially common and can have host effects ranging from reproductive manipulation to nutrient provisioning and defense against natural enemies. In this study, we report a genus-wide association of Myrmica ants with the inherited bacterial symbiont Spiroplasma We screen Myrmica ants collected from the wild, including the invasive European fire ant, Myrmica rubra, and find an extraordinarily high prevalence of this symbiont-8 of 9 species, 42 of 43 colonies, and 250 of 276 individual workers harbored Spiroplasma-only one host species was uninfected. In our screens, each host species carried a distinct Spiroplasma strain, and none were infected with more than one strain. All symbionts belong to the citri clade, allied most closely with pathogenic strains of Spiroplasma infecting corn crops and honeybees, and there is strong evidence of host-symbiont persistence across evolutionary time scales. Genome sequencing of two Spiroplasma symbionts revealed candidate genes that may play a part in the symbiosis, a nutrient transporter absent from other Spiroplasma strains, and a ribosome-inactivating protein previously implicated in parasite defense. These results together suggest long-term, likely mutualistic, relationships atypical of Spiroplasma-insect associations with potential significance for broad ecological interactions with MyrmicaIMPORTANCE Animal-associated microbial symbionts can dramatically affect the biology of their hosts. The identification and characterization of these intimate partnerships remain an essential component of describing and predicting species interactions, especially for invasive host species. Ants perform crucial ecological functions as ecosystem engineers, scavengers, and predators, and ants in the genus Myrmica can be aggressive resource competitors and reach high densities in their native and invaded habitats. In this study, a novel symbiosis is identified between Myrmica ants and the facultative bacterial symbiont Spiroplasma Broad host distribution, high frequencies of infection, and host-symbiont codivergence over evolutionary time scales, an uncommon feature of Spiroplasma associations, suggest an important likely mutualistic interaction. Genome sequencing identified highly divergent gene candidates that may contribute to Spiroplasma's role as a possible defensive or nutritional partner in Myrmica.


Asunto(s)
Hormigas/microbiología , Evolución Molecular , Variación Genética , Spiroplasma/genética , Simbiosis/genética , Animales , Evolución Biológica , Genoma Bacteriano , Filogenia , Saporinas/genética , Secuenciación Completa del Genoma
16.
Mol Ecol ; 26(20): 5855-5868, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28833928

RESUMEN

Hemipteran insects of the suborder Sternorrhyncha are plant sap feeders, where each family is obligately associated with a specific bacterial endosymbiont that produces essential nutrients lacking in the sap. Coccidae (soft scale insects) is the only major sternorrhynchan family in which obligate symbiont(s) have not been identified. We studied the microbiota in seven species from this family from Israel, Spain and Cyprus, by high-throughput sequencing of ribosomal genes, and found that no specific bacterium was prevalent and abundant in all the tested species. In contrast, an Ophiocordyceps-allied fungus sp.-a lineage widely known as entomopathogenic-was highly prevalent. All individuals of all the tested species carried this fungus. Phylogenetic analyses showed that the Ophiocordyceps-allied fungus from the coccids is closely related to fungi described from other hemipterans, and they appear to be monophyletic, although the phylogenies of the Ophiocordyceps-allied fungi and their hosts do not appear to be congruent. Microscopic observations show that the fungal cells are lemon-shaped, are distributed throughout the host's body and are present in the eggs, suggesting vertical transmission. Taken together, the results suggest that the Ophiocordyceps-allied fungus may be a primary symbiont of Coccidae-a major evolutionary shift from bacteria to fungi in the Sternorrhyncha, and an important example of fungal evolutionary lifestyle switch.


Asunto(s)
Hemípteros/microbiología , Hypocreales/clasificación , Microbiota , Animales , Chipre , ADN de Hongos/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Hypocreales/aislamiento & purificación , Israel , Filogenia , Ribosomas/genética , Análisis de Secuencia de ADN , España , Simbiosis
17.
Virus Evol ; 3(1): vex015, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28744370

RESUMEN

Little is known of the evolution of RNA viruses in aquatic systems. Here, we assess the genetic connectivity of two bunyaviruses (Kigluaik phantom orthophasmavirus or KIGV and Nome phantom orthophasmavirus or NOMV) with zooplanktonic hosts from subarctic ponds. We expected weak genetic structure among populations as the hosts (phantom midges) have a terrestrial winged dispersal stage. To test whether their respective viruses mirror this structure, we collected and analyzed population datasets from 21 subarctic freshwater ponds and obtained sequences from all four genes in the viral genomes. Prevalence averaged 66 per cent for 514 host specimens and was not significantly different between recently formed thaw ponds and glacial ponds. Unexpectedly, KIGV from older ponds showed pronounced haplotype divergence with little evidence of genetic connectivity. However, KIGV populations from recent thaw ponds appeared to be represented by a closely related haplotype group, perhaps indicating a genotypic dispersal bias. Unlike KIGV, NOMV had modest structure and diversity in recently formed thaw ponds. For each virus, we found elevated genetic diversity relative to the host, but similar population structures to the host. Our results suggest that non-random processes such as virus-host interactions, genotypic bias, and habitat effects differ among polar aquatic RNA viruses.

18.
PLoS Pathog ; 13(7): e1006431, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28683136

RESUMEN

While it has become increasingly clear that multicellular organisms often harbor microbial symbionts that protect their hosts against natural enemies, the mechanistic underpinnings underlying most defensive symbioses are largely unknown. Spiroplasma bacteria are widespread associates of terrestrial arthropods, and include strains that protect diverse Drosophila flies against parasitic wasps and nematodes. Recent work implicated a ribosome-inactivating protein (RIP) encoded by Spiroplasma, and related to Shiga-like toxins in enterohemorrhagic Escherichia coli, in defense against a virulent parasitic nematode in the woodland fly, Drosophila neotestacea. Here we test the generality of RIP-mediated protection by examining whether Spiroplasma RIPs also play a role in wasp protection, in D. melanogaster and D. neotestacea. We find strong evidence for a major role of RIPs, with ribosomal RNA (rRNA) from the larval endoparasitic wasps, Leptopilina heterotoma and Leptopilina boulardi, exhibiting the hallmarks of RIP activity. In Spiroplasma-containing hosts, parasitic wasp ribosomes show abundant site-specific depurination in the α-sarcin/ricin loop of the 28S rRNA, with depurination occurring soon after wasp eggs hatch inside fly larvae. Interestingly, we found that the pupal ectoparasitic wasp, Pachycrepoideus vindemmiae, escapes protection by Spiroplasma, and its ribosomes do not show high levels of depurination. We also show that fly ribosomes show little evidence of targeting by RIPs. Finally, we find that the genome of D. neotestacea's defensive Spiroplasma encodes a diverse repertoire of RIP genes, which are differ in abundance. This work suggests that specificity of defensive symbionts against different natural enemies may be driven by the evolution of toxin repertoires, and that toxin diversity may play a role in shaping host-symbiont-enemy interactions.


Asunto(s)
Proteínas Bacterianas/toxicidad , Toxinas Bacterianas/toxicidad , Drosophila/microbiología , Drosophila/parasitología , Proteínas Inactivadoras de Ribosomas/toxicidad , Spiroplasma/metabolismo , Simbiosis , Avispas/efectos de los fármacos , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Evolución Biológica , Drosophila/genética , Drosophila/fisiología , Larva/genética , Larva/microbiología , Larva/parasitología , Larva/fisiología , Proteínas Inactivadoras de Ribosomas/genética , Proteínas Inactivadoras de Ribosomas/metabolismo , Spiroplasma/genética , Avispas/fisiología
19.
Res Microbiol ; 168(1): 94-101, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27602526

RESUMEN

The planthopper Hyalesthes obsoletus (Hemiptera: Cixiidae) is an important vector of phytoplasma diseases in grapevine. In the current study, the bacterial community compositions of symbionts of this insect were examined. Two dominant bacterial lineages were identified by mass sequencing: the obligate symbiont Candidatus Sulcia, and a facultative symbiont that is closely related to Pectobacterium sp. and to BEV, a cultivable symbiont of another phytoplasma vector, the leafhopper Euscelidius variegatus. In addition, one bacterium was successfully isolated in this study - a member of the family Xanthomonadaceae that is most closely related to the genus Dyella. This Dyella-like bacterium (DLB) was detected by FISH analysis in H. obsoletus guts but not ovaries, and its prevalence in H. obsoletus increased during the fall, suggesting that it was acquired by the host through feeding. We found that DLB inhibits Spiroplasma melliferum, a cultivable relative of phytoplasma, suggesting that it is a potential candidate for biological control against phytoplasma in grapevines.


Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , Hemípteros/microbiología , Insectos Vectores/microbiología , Simbiosis , Animales , Bacterias/genética , Bacterias/crecimiento & desarrollo , Proteínas Bacterianas/genética , Análisis por Conglomerados , Filogenia , Homología de Secuencia
20.
PeerJ ; 2: e556, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25237605

RESUMEN

An understanding of the timescale of evolution is critical for comparative virology but remains elusive for many RNA viruses. Age estimates based on mutation rates can severely underestimate divergences for ancient viral genes that are evolving under strong purifying selection. Paleoviral dating, however, can provide minimum age estimates for ancient divergence, but few orthologous paleoviruses are known within clades of extant viruses. For example, ebolaviruses and marburgviruses are well-studied mammalian pathogens, but their comparative biology is difficult to interpret because the existing estimates of divergence are controversial. Here we provide evidence that paleoviral elements of two genes (ebolavirus-like VP35 and NP) in cricetid rodent genomes originated after the divergence of ebolaviruses and cuevaviruses from marburgviruses. We provide evidence of orthology by identifying common paleoviral insertion sites among the rodent genomes. Our findings indicate that ebolaviruses and cuevaviruses have been diverging from marburgviruses since the early Miocene.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...