Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 7377, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37147393

RESUMEN

Coarse Woody Debris (CWDs) are constantly exposed to the natural decomposition process of wood, which can lead to a change in its physical-chemical properties. However, these changes have not yet been fully elucidated, requiring further studies to help to understand the effect of this process on CWDs degradation. Thus, the objectives of this study were: (i) verify if the decomposition affects the physical-chemical properties of the CWDs; (ii) verify if the structural chemical composition of the CWDs is altered as a function of decomposition, using immediate chemical and thermogravimetric analysis. Wood samples were collected from the CWDs to carry out these analyses, considering pieces with diameters ≥ 5 cm separated into 4 decay classes. The results indicated that the average apparent density decreased as a function of the increase of CWDs decomposition (0.62-0.37 g cm-3). The averages contents of Carbon and Nitrogen suffered less impact with the increase of CWDs decompositions, ranging from 49.66 to 48.80% and 0.52 to 0.58%, respectively. Immediate chemical and thermogravimetric analysis indicated a loss of holocelluloses and extractives and an increase in the concentration of lignin and ash throughout the decomposition process. The weight loss analyzed by thermogravimetric analysis was greater for less decomposed CWDs and with larger diameters. The use of these analyzes removes the subjectivity of CWDs decay classes, reducing the number of tests to determine CWDs physical-chemical properties and increasing the studies accuracy focused on the carbon cycle of these materials.

2.
Environ Res ; 232: 115927, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37088320

RESUMEN

Activated zinc biochar (ZnBC) and humic acid (HA) were used as coating agents in a soluble monoammonium phosphate (MAP) to modify phosphorus (P) use efficiency by altering adsorption/desorption kinetics between the granule region and the soil. The coated treatments MAPZnBC and MAPHA were compared with MAP through P diffusivity, kinetics, and agronomic evaluation. Eucalyptus sawdust was used as biomass for biochar synthesis, and a pre-pyrolysis treatment with zinc chloride (ZnCl2) was applied. The P diffusivity was evaluated in the fertosphere zone. Adsorption and desorption potential of the ZnBC compared with control biochar (BC) was evaluated separately. Desorption kinetics of P from soil was assessed after incubation with MAPZnBC and MAPHA. The shoot dry matter yield (SDM), P uptake, and P use efficiency (PUE) were evaluated with a pot experiment in a clay Oxisol sown with maize and soybeans as successive plant trials, under glasshouse conditions. Surface area values of 940 and 305 m2 g-1 combined with adsorption capacities of 106 and 53 mg P g-1 for ZnBC and BC, respectively, confirm the increased capacity of activated biochar to adsorb P. Both MAPZnBC and MAPHA decreased P diffusivity compared to MAP after 20 days of incubation. Moreover, MAPZnBC and MAPHA presented 20% and 34% more water-soluble phosphorus recovery. MAPZnBC expressed an increase in SDM while MAPHA highlighted P uptake and PUE compared with MAP. Both kinetic studies and agronomic evaluations showed that ZnBC and HA are suitable as coatings for phosphate fertilizers in terms of increasing P efficiency in the fertosphere on high P-fixing soils.


Asunto(s)
Fertilizantes , Sustancias Húmicas , Fertilizantes/análisis , Cinética , Suelo/química , Fósforo , Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...