Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Microb Physiol ; 76: 129-186, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32408946

RESUMEN

The synthetic s-triazines are abundant, nitrogen-rich, heteroaromatic compounds used in a multitude of applications including, herbicides, plastics and polymers, and explosives. Their presence in the environment has led to the evolution of bacterial catabolic pathways in bacteria that allow use of these anthropogenic chemicals as a nitrogen source that supports growth. Herbicidal s-triazines have been used since the mid-twentieth century and are among the most heavily used herbicides in the world, despite being withdrawn from use in some areas due to concern about their safety and environmental impact. Bacterial catabolism of the herbicidal s-triazines has been studied extensively. Pseudomonas sp. strain ADP, which was isolated more than thirty years after the introduction of the s-triazine herbicides, has been the model system for most of these studies; however, several alternative catabolic pathways have also been identified. Over the last five years, considerable detail about the molecular mode of action of the s-triazine catabolic enzymes has been uncovered through acquisition of their atomic structures. These structural studies have also revealed insights into the evolutionary origins of this newly acquired metabolic capability. In addition, s-triazine-catabolizing bacteria and enzymes have been used in a range of applications, including bioremediation of herbicides and cyanuric acid, introducing metabolic resistance to plants, and as a novel selectable marker in fermentation organisms. In this review, we cover the discovery and characterization of bacterial strains, metabolic pathways and enzymes that catabolize the s-triazines. We also consider the evolution of these new enzymes and pathways and discuss the practical applications that have been considered for these bacteria and enzymes. One Sentence Summary: A detailed understanding of bacterial herbicide catabolic enzymes and pathways offer new evolutionary insights and novel applied tools.


Asunto(s)
Bacterias/enzimología , Bacterias/genética , Herbicidas/metabolismo , Redes y Vías Metabólicas , Triazinas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biodegradación Ambiental , Evolución Molecular , Regulación Bacteriana de la Expresión Génica , Herbicidas/química , Modelos Biológicos , Conformación Proteica , Pseudomonas/enzimología , Pseudomonas/genética , Pseudomonas/metabolismo , Triazinas/química
2.
Appl Environ Microbiol ; 86(10)2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32198167

RESUMEN

Burkholderia sp. strain SG-MS1 and Pseudomonas sp. strain SG-MS2 have previously been found to mineralize (+)-pinoresinol through a common catabolic pathway. Here, we used comparative genomics, proteomics, protein semipurification, and heterologous expression to identify a flavoprotein from the vanillyl alcohol oxidase/p-cresol methyl hydroxylase (VAO/PCMH) enzyme family in SG-MS2 that carries out the initial hydroxylation of (+)-pinoresinol at the benzylic carbon. The cognate gene is translationally coupled with a downstream cytochrome gene, and the cytochrome is required for activity. The flavoprotein has a unique combination of cofactor binding and cytochrome requirements for the VAO/PCMH family. The heterologously expressed enzyme has a Km of 1.17 µM for (+)-pinoresinol. The enzyme is overexpressed in strain SG-MS2 upon exposure to (+)-pinoresinol, along with 45 other proteins, 22 of which were found to be encoded by genes in an approximately 35.1-kb cluster also containing the flavoprotein and cytochrome genes. Homologs of 18 of these 22 genes, plus the flavoprotein and cytochrome genes, were also found in a 38.7-kb cluster in SG-MS1. The amino acid identities of four of the other proteins within the SG-MS2 cluster suggest they catalyze conversion of hydroxylated pinoresinol to protocatechuate and 2-methoxyhydroquinone. Nine other proteins upregulated in SG-MS2 on exposure to (+)-pinoresinol appear to be homologs of proteins known to comprise the protocatechuate and 2-methoxyhydroquinone catabolic pathways, but only three of the cognate genes lie within the cluster containing the flavoprotein and cytochrome genes.IMPORTANCE (+)-Pinoresinol is an important plant defense compound, a major food lignan for humans and some other animals, and the model compound used to study degradation of the ß-ß' linkages in lignin. We report a gene cluster, in one strain each of Pseudomonas and Burkholderia, that is involved in the oxidative catabolism of (+)-pinoresinol. The flavoprotein component of the α-hydroxylase which heads the pathway belongs to the 4-phenol oxidizing (4PO) subgroup of the vanillyl alcohol oxidase/p-cresol methyl hydroxylase (VAO/PCMH) enzyme family but constitutes a novel combination of cofactor and electron acceptor properties for the family. It is translationally coupled with a cytochrome gene whose product is also required for activity. The work casts new light on the biology of (+)-pinoresinol and its transformation to other bioactive molecules. Potential applications of the findings include new options for deconstructing lignin into useful chemicals and the generation of new phytoestrogenic enterolactones from lignans.


Asunto(s)
Proteínas Bacterianas/genética , Flavoproteínas/genética , Furanos/metabolismo , Genes Bacterianos/genética , Lignanos/metabolismo , Pseudomonas/genética , Proteínas Bacterianas/metabolismo , Flavoproteínas/metabolismo , Redes y Vías Metabólicas , Familia de Multigenes , Oxidación-Reducción , Pseudomonas/metabolismo
3.
Appl Environ Microbiol ; 84(4)2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29222099

RESUMEN

Pinoresinol is a dimer of two ß-ß'-linked coniferyl alcohol molecules. It is both a plant defense molecule synthesized through the shikimic acid pathway and a representative of several ß-ß-linked dimers produced during the microbial degradation of lignin in dead plant material. Until now, little has been known about the bacterial catabolism of such dimers. Here we report the isolation of the efficient (+)-pinoresinol-mineralizing Pseudomonas sp. strain SG-MS2 and its catabolic pathway. Degradation of pinoresinol in this strain is inducible and proceeds via a novel oxidative route, which is in contrast to the previously reported reductive transformation by other bacteria. Based on enzyme assays and bacterial growth, cell suspension, and resting cell studies, we provide conclusive evidence that pinoresinol degradation in strain SG-MS2 is initiated by benzylic hydroxylation, generating a hemiketal via a quinone methide intermediate, which is then hydrated at the benzylic carbon by water. The hemiketal, which stays in equilibrium with the corresponding keto alcohol, undergoes an aryl-alkyl cleavage to generate a lactone and 2-methoxyhydroquinone. While the fate of 2-methoxyhydroquinone is not investigated further, it is assumed to be assimilated by ring cleavage. The lactone is further metabolized via two routes, namely, lactone ring cleavage and benzylic hydroxylation via a quinone methide intermediate, as described above. The resulting hemiketal again exists in equilibrium with a keto alcohol. Our evidence suggests that both routes of lactone metabolism lead to vanillin and vanillic acid, which we show can then be mineralized by strain SG-MS2.IMPORTANCE The oxidative catabolism of (+)-pinoresinol degradation elucidated here is fundamentally different from the reductive cometabolism reported for two previously characterized bacteria. Our findings open up new opportunities to use lignin for the biosynthesis of vanillin, a key flavoring agent in foods, beverages, and pharmaceuticals, as well as various new lactones. Our work also has implications for the study of new pinoresinol metabolites in human health. The enterodiol and enterolactone produced through reductive transformation of pinoresinol by gut microbes have already been associated with decreased risks of cancer and cardiovascular diseases. The metabolites from oxidative metabolism we find here also deserve attention in this respect.


Asunto(s)
Calcificación Fisiológica/fisiología , Furanos/metabolismo , Lignanos/metabolismo , Redes y Vías Metabólicas , Pseudomonas/aislamiento & purificación , Pseudomonas/metabolismo , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Benzaldehídos/metabolismo , Microbioma Gastrointestinal/fisiología , Humanos , Lignina/metabolismo , Minerales/metabolismo , Pseudomonas/genética
4.
Appl Environ Microbiol ; 83(9)2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28235873

RESUMEN

The Toblerone fold was discovered recently when the first structure of the cyclic amide hydrolase, AtzD (a cyanuric acid hydrolase), was elucidated. We surveyed the cyclic amide hydrolase family, finding a strong correlation between phylogenetic distribution and specificity for either cyanuric acid or barbituric acid. One of six classes (IV) could not be tested due to a lack of expression of the proteins from it, and another class (V) had neither cyanuric acid nor barbituric acid hydrolase activity. High-resolution X-ray structures were obtained for a class VI barbituric acid hydrolase (1.7 Å) from a Rhodococcus species and a class V cyclic amide hydrolase (2.4 Å) from a Frankia species for which we were unable to identify a substrate. Both structures were homologous with the tetrameric Toblerone fold enzyme AtzD, demonstrating a high degree of structural conservation within the cyclic amide hydrolase family. The barbituric acid hydrolase structure did not contain zinc, in contrast with early reports of zinc-dependent activity for this enzyme. Instead, each barbituric acid hydrolase monomer contained either Na+ or Mg2+, analogous to the structural metal found in cyanuric acid hydrolase. The Frankia cyclic amide hydrolase contained no metal but instead formed unusual, reversible, intermolecular vicinal disulfide bonds that contributed to the thermal stability of the protein. The active sites were largely conserved between the three enzymes, differing at six positions, which likely determine substrate specificity.IMPORTANCE The Toblerone fold enzymes catalyze an unusual ring-opening hydrolysis with cyclic amide substrates. A survey of these enzymes shows that there is a good correlation between physiological function and phylogenetic distribution within this family of enzymes and provide insights into the evolutionary relationships between the cyanuric acid and barbituric acid hydrolases. This family of enzymes is structurally and mechanistically distinct from other enzyme families; however, to date the structure of just two, physiologically identical, enzymes from this family has been described. We present two new structures: a barbituric acid hydrolase and an enzyme of unknown function. These structures confirm that members of the CyAH family have the unusual Toblerone fold, albeit with some significant differences.


Asunto(s)
Amidohidrolasas/química , Frankia/enzimología , Rhodococcus/enzimología , Amidohidrolasas/aislamiento & purificación , Dominio Catalítico , Análisis por Conglomerados , Biología Computacional , Cristalografía por Rayos X , Metales/análisis , Modelos Moleculares , Filogenia , Conformación Proteica , Homología de Secuencia
5.
Toxicol Lett ; 268: 8-16, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-27988393

RESUMEN

Anticholinesterase insecticides such as organophosphorous (OP) and carbamates pesticides (CB); and synthetic pyrethroids (SP) pesticides commonly co-occur in the environment. This raises the possibility of antagonistic, additive, or synergistic neurotoxicity in exposed organisms. Acetylcholinesterase (AChE) inhibition has been demonstrated to be useful as a biomarker for exposure to OP and CBs in many environments. This study investigated the response of housefly (Musca domestica) head AChE (HF-AChE) exposed to five OPs; chlorpyrifos (CPF), malathion (MLT), triazophos (TRZ), monocrotophos (MCP) and profenofos (PRF) and two CBs; carbaryl (CRB) and carbofuran (CBF) as individual compounds and as binary mixtures of OPs and CBs under in vitro conditions. In addition, the selected OPs and CBs were evaluated for their toxicity in binary combinations with two SPs; deltamethrin (DLT) and cypermethrin (CYP) at fixed concentrations of 0.1 and 10µg/L. The toxicological interaction of five OPs with two CBs pesticides was evaluated under oxidised and un-oxidised conditions using a toxic unit (TU) approach and a concentration addition (CA) model. Pyrethroid combinations were assessed only under oxidised conditions. Since OPs and CBs act by a similar mechanism of inhibition of AChE, a dose additive effect was expected, but not conclusively found. TRZ with either CBF or CRB exhibited synergism under oxidised and un-oxidised conditions but the degree of synergism was stronger under un-oxidised conditions. Additivity was exhibited by CBF+MCP, CRB+MCP, CRB+MLT and CBF+MCP under un-oxidised conditions and CRB+MCP and CRB+CPF under oxidised conditions. Pyrethorids in combination with OPs (TRZ, MLT and CPF) were highly synergistic. In the present study, we used pure housefly head AChE without any interference of monooxygenase and/or esterase enzyme activities. Therefore these other enzymes were not producing the observed deviations from concentration-addition in the binary combinations between OPs, CBs and SPs. The mechanisms of OP, CB and SP interactions in pesticide mixtures requires further investigation.


Asunto(s)
Acetilcolinesterasa/metabolismo , Carbamatos/toxicidad , Inhibidores de la Colinesterasa/toxicidad , Moscas Domésticas/efectos de los fármacos , Proteínas de Insectos/metabolismo , Insecticidas/toxicidad , Organofosfatos/toxicidad , Piretrinas/toxicidad , Animales , Relación Dosis-Respuesta a Droga , Combinación de Medicamentos , Sinergismo Farmacológico , Moscas Domésticas/enzimología , Pruebas de Toxicidad
6.
PLoS One ; 10(9): e0137700, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26390431

RESUMEN

The N-isopropylammelide isopropylaminohydrolase from Pseudomonas sp. strain ADP, AtzC, provides the third hydrolytic step in the mineralization of s-triazine herbicides, such as atrazine. We obtained the X-ray crystal structure of AtzC at 1.84 Å with a weak inhibitor bound in the active site and then used a combination of in silico docking and site-directed mutagenesis to understand the interactions between AtzC and its substrate, isopropylammelide. The substitution of an active site histidine residue (His249) for an alanine abolished the enzyme's catalytic activity. We propose a plausible catalytic mechanism, consistent with the biochemical and crystallographic data obtained that is similar to that found in carbonic anhydrase and other members of subtype III of the amidohydrolase family.


Asunto(s)
Amidohidrolasas/genética , Proteínas Bacterianas/genética , Amidohidrolasas/metabolismo , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Mutagénesis Sitio-Dirigida , Conformación Proteica
7.
Appl Environ Microbiol ; 81(2): 470-80, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25362066

RESUMEN

The activity of the allophanate hydrolase from Pseudomonas sp. strain ADP, AtzF, provides the final hydrolytic step for the mineralization of s-triazines, such as atrazine and cyanuric acid. Indeed, the action of AtzF provides metabolic access to two of the three nitrogens in each triazine ring. The X-ray structure of the N-terminal amidase domain of AtzF reveals that it is highly homologous to allophanate hydrolases involved in a different catabolic process in other organisms (i.e., the mineralization of urea). The smaller C-terminal domain does not appear to have a physiologically relevant catalytic function, as reported for the allophanate hydrolase of Kluyveromyces lactis, when purified enzyme was tested in vitro. However, the C-terminal domain does have a function in coordinating the quaternary structure of AtzF. Interestingly, we also show that AtzF forms a large, ca. 660-kDa, multienzyme complex with AtzD and AtzE that is capable of mineralizing cyanuric acid. The function of this complex may be to channel substrates from one active site to the next, effectively protecting unstable metabolites, such as allophanate, from solvent-mediated decarboxylation to a dead-end metabolic product.


Asunto(s)
Alofanato Hidrolasa/química , Alofanato Hidrolasa/metabolismo , Amidohidrolasas/química , Amidohidrolasas/metabolismo , Triazinas/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Conformación Proteica , Pseudomonas/enzimología
8.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 3): 310-5, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24598916

RESUMEN

The allophanate hydrolase from Pseudomonas sp. strain ADP was expressed and purified, and a tryptic digest fragment was subsequently identified, expressed and purified. This 50 kDa construct retained amidase activity and was crystallized. The crystals diffracted to 2.5 Šresolution and adopted space group P21, with unit-cell parameters a = 82.4, b = 179.2, c = 112.6 Å, ß = 106.6°.


Asunto(s)
Alofanato Hidrolasa/química , Proteínas Bacterianas/química , Pseudomonas/enzimología , Amidohidrolasas/química , Cristalización , Cristalografía por Rayos X , Estabilidad de Enzimas , Proteolisis , Análisis de Secuencia de Proteína , Tripsina/química
9.
Mol Microbiol ; 88(6): 1149-63, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23651355

RESUMEN

The cyanuric acid hydrolase, AtzD, is the founding member of a newly identified family of ring-opening amidases. We report the first X-ray structure for this family, which is a novel fold (termed the 'Toblerone' fold) that likely evolved via the concatenation of monomers of the trimeric YjgF superfamily and the acquisition of a metal binding site. Structures of AtzD with bound substrate (cyanuric acid) and inhibitors (phosphate, barbituric acid and melamine), along with mutagenesis studies, allowed the identification of the active site. The AtzD monomer, active site and substrate all possess threefold rotational symmetry, to the extent that the active site possesses three potential Ser-Lys catalytic dyads. A single catalytic dyad (Ser85-Lys42) is hypothesized, based on biochemical evidence and crystallographic data. A plausible catalytic mechanism based on these observations is also presented. A comparison with a homology model of the related barbiturase, Bar, was used to infer the active-site residues responsible for substrate specificity, and the phylogeny of the 68 AtzD-like enzymes in the database were analysed in light of this structure-function relationship.


Asunto(s)
Amidohidrolasas/química , Triazinas/química , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Análisis Mutacional de ADN , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Modelos Moleculares , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Unión Proteica , Conformación Proteica , Triazinas/metabolismo
10.
PLoS One ; 7(11): e51162, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23226482

RESUMEN

A 6-chloronicotinic acid mineralizing bacterium was isolated from enrichment cultures originating from imidacloprid-contaminated soil samples. This Bradyrhizobiaceae, designated strain SG-6C, hydrolytically dechlorinated 6-chloronicotinic acid to 6-hydroxynicotinic acid, which was then further metabolised via the nicotinic acid pathway. This metabolic pathway was confirmed by growth and resting cell assays using HPLC and LC-MS studies. A candidate for the gene encoding the initial dechlorination step, named cch2 (for 6-chloronicotinic acid chlorohydrolase), was identified using genome sequencing and its function was confirmed using resting cell assays on E. coli heterologously expressing this gene. The 464 amino acid enzyme was found to be a member of the metal dependent hydrolase superfamily with similarities to the TRZ/ATZ family of chlorohydrolases. We also provide evidence that cch2 was mobilized into this bacterium by an Integrative and Conjugative Element (ICE) that feeds 6-hydroxynicotinic acid into the existing nicotinic acid mineralization pathway.


Asunto(s)
Bradyrhizobiaceae/enzimología , Bradyrhizobiaceae/aislamiento & purificación , Hidrolasas/genética , Minerales/metabolismo , Ácidos Nicotínicos/metabolismo , Biodegradación Ambiental , Bradyrhizobiaceae/genética , Bradyrhizobiaceae/crecimiento & desarrollo , Clonación Molecular , Conjugación Genética/genética , Genes Bacterianos/genética , Hidrolasas/metabolismo , Ácidos Nicotínicos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...