Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 42(2): 183-201, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34772739

RESUMEN

Peripheral nerves are organized into discrete compartments. Axons, Schwann cells (SCs), and endoneurial fibroblasts (EFs) reside within the endoneurium and are surrounded by the perineurium, a cellular sheath comprised of layers of perineurial glia (PNG). SC secretion of Desert Hedgehog (Dhh) regulates this organization. In Dhh nulls, the perineurium is deficient and the endoneurium is subdivided into small compartments termed minifascicles. Human Dhh mutations cause a neuropathy with similar defects. Here we examine the role of Gli1, a canonical transcriptional effector of hedgehog signaling, in regulating peripheral nerve organization in mice of both genders. We identify PNG, EFs, and pericytes as Gli1-expressing cells by genetic fate mapping. Although expression of Dhh by SCs and Gli1 in target cells is coordinately regulated with myelination, Gli1 expression unexpectedly persists in Dhh null EFs. Thus, Gli1 is expressed in EFs noncanonically (i.e., independent of hedgehog signaling). Gli1 and Dhh also have nonredundant activities. Unlike Dhh nulls, Gli1 nulls have a normal perineurium. Like Dhh nulls, Gli1 nulls form minifascicles, which we show likely arise from EFs. Thus, Dhh and Gli1 are independent signals: Gli1 is dispensable for perineurial development but functions cooperatively with Dhh to drive normal endoneurial development. During development, Gli1 also regulates endoneurial extracellular matrix production, nerve vascular organization, and has modest, nonautonomous effects on SC sorting and myelination of axons. Finally, in adult nerves, induced deletion of Gli1 is sufficient to drive minifascicle formation. Thus, Gli1 regulates the development and is required to maintain the endoneurial architecture of peripheral nerves.SIGNIFICANCE STATEMENT Peripheral nerves are organized into distinct cellular/ECM compartments: the epineurium, perineurium, and endoneurium. This organization, with its associated cellular constituents, is critical for the structural and metabolic support of nerves and their response to injury. Here, we show that Gli1, a transcription factor normally expressed downstream of hedgehog signaling, is required for the proper organization of the endoneurium but not the perineurium. Unexpectedly, Gli1 expression by endoneurial cells is independent of, and functions nonredundantly with, Schwann Cell-derived Desert Hedgehog in regulating peripheral nerve architecture. These results further delineate how peripheral nerves acquire their distinctive organization during normal development, and highlight mechanisms that may regulate their reorganization in pathologic settings, including peripheral neuropathies and nerve injury.


Asunto(s)
Nervios Periféricos/metabolismo , Proteína con Dedos de Zinc GLI1/metabolismo , Animales , Axones/metabolismo , Proteína 2 de la Respuesta de Crecimiento Precoz/genética , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Femenino , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Noqueados , Células de Schwann/metabolismo , Proteína con Dedos de Zinc GLI1/genética
2.
Muscle Nerve ; 57(5): 749-755, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28981955

RESUMEN

INTRODUCTION: This study analyzes and describes atypical presentations of Charcot-Marie-Tooth disease type 4C (CMT4C). METHODS: We present clinical and physiologic features of 5 patients with CMT4C caused by biallelic private mutations of SH3TC2. RESULTS: All patients manifested scoliosis, and nerve conduction study indicated results in the demyelinating range. All patients exhibited signs of motor impairment within the first years of life. We describe 2 or more different genetic diseases in the same patient, atypical presentations of CMT, and 3 new mutations in CMT4C patients. DISCUSSION: A new era of unbiased genetic testing has led to this small case series of individuals with CMT4C and highlights the recognition of different genetic diseases in CMT4C patients for accurate diagnosis, genetic risk identification, and therapeutic intervention. The phenotype of CMT4C, in addition, appears to be enriched by a number of features unusual for the broad CMT category. Muscle Nerve 57: 749-755, 2018.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Mutación/genética , Proteínas/genética , Adolescente , Adulto , Animales , Animales Recién Nacidos , Enfermedad de Charcot-Marie-Tooth/complicaciones , Enfermedad de Charcot-Marie-Tooth/diagnóstico , Enfermedad de Charcot-Marie-Tooth/genética , Niño , Enfermedades Desmielinizantes/etiología , Femenino , Pruebas Genéticas , Humanos , Péptidos y Proteínas de Señalización Intracelular , Masculino , Ratas , Ratas Sprague-Dawley , Nervio Ciático/metabolismo , Escoliosis/etiología
3.
J Neurosci ; 36(16): 4506-21, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-27098694

RESUMEN

The signaling pathways that regulate myelination in the PNS remain poorly understood. Phosphatidylinositol-4,5-bisphosphate 3-kinase 1A, activated in Schwann cells by neuregulin and the extracellular matrix, has an essential role in the early events of myelination. Akt/PKB, a key effector of phosphatidylinositol-4,5-bisphosphate 3-kinase 1A, was previously implicated in CNS, but not PNS myelination. Here we demonstrate that Akt plays a crucial role in axon ensheathment and in the regulation of myelin sheath thickness in the PNS. Pharmacological inhibition of Akt in DRG neuron-Schwann cell cocultures dramatically decreased MBP and P0 levels and myelin sheath formation without affecting expression of Krox20/Egr2, a key transcriptional regulator of myelination. Conversely, expression of an activated form of Akt in purified Schwann cells increased expression of myelin proteins, but not Krox20/Egr2, and the levels of activated Rac1. Transgenic mice expressing a membrane-targeted, activated form of Akt under control of the 2',3'-cyclic nucleotide 3'-phosphodiesterase promoter, exhibited thicker PNS and CNS myelin sheaths, and PNS myelin abnormalities, such as tomacula and myelin infoldings/outfoldings, centered around the paranodes and Schmidt Lanterman incisures. These effects were corrected by rapamycin treatmentin vivo Importantly, Akt activity in the transgenic mice did not induce myelination of nonmyelinating Schwann cells in the sympathetic trunk or Remak fibers of the dorsal roots, although, in those structures, they wrapped membranes redundantly around axons. Together, our data indicate that Akt is crucial for PNS myelination driving axonal wrapping by unmyelinated and myelinated Schwann cells and enhancing myelin protein synthesis in myelinating Schwann cells. SIGNIFICANCE STATEMENT: Although the role of the key serine/threonine kinase Akt in promoting CNS myelination has been demonstrated, its role in the PNS has not been established and remains uncertain. This work reveals that Akt controls several key steps of the PNS myelination. First, its activity promotes membrane production and axonal wrapping independent of a transcriptional effect. In myelinated axons, it also enhances myelin thickness through the mTOR pathway. Finally, sustained Akt activation in Schwann cells leads to hypermyelination/dysmyelination, mimicking some features present in neuropathies, such as hereditary neuropathy with liability to pressure palsies or demyelinating forms of Charcot-Marie-Tooth disease. Together, these data demonstrate the role of Akt in regulatory mechanisms underlying axonal wrapping and myelination in the PNS.


Asunto(s)
Axones/fisiología , Vaina de Mielina/fisiología , Proteína Oncogénica v-akt/fisiología , Nervio Ciático/fisiología , Animales , Axones/ultraestructura , Células Cultivadas , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Vaina de Mielina/ultraestructura , Nervios Periféricos/fisiología , Nervios Periféricos/ultraestructura , Sistema Nervioso Periférico/fisiología , Sistema Nervioso Periférico/ultraestructura , Nervio Ciático/ultraestructura
4.
J Neurosci ; 35(10): 4151-6, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25762662

RESUMEN

Lactate, a product of glycolysis, has been shown to play a key role in the metabolic support of neurons/axons in the CNS by both astrocytes and oligodendrocytes through monocarboxylate transporters (MCTs). Despite such importance in the CNS, little is known about MCT expression and lactate function in the PNS. Here we show that mouse MCT1, MCT2, and MCT4 are expressed in the PNS. While DRG neurons express MCT1, myelinating Schwann cells (SCs) coexpress MCT1 and MCT4 in a domain-specific fashion, mainly in regions of noncompact myelin. Interestingly, SC-specific downregulation of MCT1 expression in rat neuron/SC cocultures led to increased myelination, while its downregulation in neurons resulted in a decreased amount of neurofilament. Finally, pure rat SCs grown in the presence of lactate exhibited an increase in the level of expression of the main myelin regulator gene Krox20/Egr2 and the myelin gene P0. These data indicate that lactate homeostasis participates in the regulation of the SC myelination program and reveal that similar to CNS, PNS axon-glial metabolic interactions are most likely mediated by MCTs.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Vaina de Mielina/metabolismo , Nervios Periféricos/metabolismo , Células Receptoras Sensoriales/metabolismo , Actinas/metabolismo , Factores de Edad , Animales , Animales Recién Nacidos , Moléculas de Adhesión Celular Neuronal/metabolismo , Células Cultivadas , Técnicas de Cocultivo , Proteína 2 de la Respuesta de Crecimiento Precoz/genética , Embrión de Mamíferos , Ganglios Espinales/citología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Técnicas In Vitro , Ácido Láctico/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Transportadores de Ácidos Monocarboxílicos/clasificación , Transportadores de Ácidos Monocarboxílicos/genética , Proteína Básica de Mielina/metabolismo , Proteína P0 de la Mielina/genética , Proteínas de Neurofilamentos/metabolismo , Nervios Periféricos/citología , Ratas , Ratas Sprague-Dawley , Células de Schwann/efectos de los fármacos , Células de Schwann/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos
5.
Glia ; 62(9): 1502-12, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24849898

RESUMEN

Peripheral myelin protein 2 (Pmp2, P2 or Fabp8), a member of the fatty acid binding protein family, was originally described together with myelin basic protein (Mbp or P1) and myelin protein zero (Mpz or P0) as one of the most abundant myelin proteins in the peripheral nervous system (PNS). Although Pmp2 is predominantly expressed in myelinated Schwann cells, its role in glia is currently unknown. To study its function in PNS biology, we have generated a complete Pmp2 knockout mouse (Pmp2(-/-) ). Comprehensive characterization of Pmp2(-/-) mice revealed a temporary reduction in their motor nerve conduction velocity (MNCV). While this change was not accompanied by any defects in general myelin structure, we detected transitory alterations in the myelin lipid profile of Pmp2(-/-) mice. It was previously proposed that Pmp2 and Mbp have comparable functions in the PNS suggesting that the presence of Mbp can partially mask the Pmp2(-/-) phenotype. Indeed, we found that Mbp lacking Shi(-/-) mice, similar to Pmp2(-/-) animals, have preserved myelin structure and reduced MNCV, but this phenotype was not aggravated in Pmp2(-/-) /Shi(-/-) mutants indicating that Pmp2 and Mbp do not substitute each other's functions in the PNS. These data, together with our observation that Pmp2 binds and transports fatty acids to membranes, uncover a role for Pmp2 in lipid homeostasis of myelinating Schwann cells.


Asunto(s)
Proteína P2 de Mielina/metabolismo , Células de Schwann/metabolismo , Animales , Membrana Celular/metabolismo , Ácidos Grasos/metabolismo , Homeostasis/fisiología , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Básica de Mielina/genética , Proteína Básica de Mielina/metabolismo , Proteína P2 de Mielina/genética , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Conducción Nerviosa , Fenotipo , ARN Mensajero/metabolismo , Nervio Ciático/patología , Nervio Ciático/fisiopatología
6.
J Neurotrauma ; 26(2): 195-207, 2009 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-19196078

RESUMEN

The molecular mechanisms triggering microglial activation after injury to the central nervous system, involving cell-extracellular matrix interactions and cytokine signaling, are not yet fully understood. Here, we report that resident microglia in spinal cord express low levels of the non-integrin laminin receptor precursor (LRP), also found on certain neurons and glial cells in the peripheral nervous system. 37LRP/p40 and its 67-kDa isoform laminin receptor (LR) were the first high-affinity laminin binding proteins identified. While the role of laminin receptor was later attributed to integrins, LRP/LR gained new interest as receptors for prions, and their interaction with laminin seems important for migration of metastatic cancer cells. Using immunohistochemistry and Western blotting, we demonstrate that traumatic spinal cord injury leads to a strong and rapid increase in LRP levels in relation to activated microglia/macrophages. Associated with laminin re-expression in the lesion epicenter, LRP-positive microglia/macrophages exhibit a rounded, ameboid-like shape characteristic of phagocytic cells, whereas in more distant loci they reveal a hypertrophied cell body and short ramifications. The same morphological difference is observed in vitro for purified microglia cultured with or without laminin. Strong, transient upregulation of LRP by activated spinal cord microglia is also induced by transection of the sciatic nerve that affects the spinal cord circuitry without blood-brain barrier dysruption. LRP expression is maximal by 1 week post-lesion, before becoming restricted to dorsal and ventral horns, sites of major structural reorganization. Our findings strongly suggest the involvement of LRP in lesion-induced activation and migration of microglia.


Asunto(s)
Microglía/metabolismo , Precursores de Proteínas/metabolismo , Proteínas Ribosómicas/metabolismo , Neuropatía Ciática/metabolismo , Traumatismos de la Médula Espinal/metabolismo , África Occidental , Factores de Edad , Animales , Células Cultivadas , Corteza Cerebral/citología , Femenino , Isomerismo , Macrófagos/citología , Macrófagos/metabolismo , Microglía/citología , Precursores de Proteínas/química , Ratas , Ratas Wistar , Proteínas Ribosómicas/química , Células de Schwann/citología , Nervio Ciático/metabolismo , Nervio Ciático/patología , Neuropatía Ciática/patología , Médula Espinal/metabolismo , Médula Espinal/patología , Traumatismos de la Médula Espinal/patología , Regulación hacia Arriba/fisiología
7.
Eur J Neurosci ; 24(4): 1031-41, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16930430

RESUMEN

To investigate the molecular basis for the poor regenerative capacity of the mammalian central nervous system (CNS) after injury, we searched for genes whose expression was affected by an adult rat spinal cord hemi-section. Differential screening of a rat spinal cord expression library was performed using polyclonal antibodies raised against lesioned spinal cord tissue. A striking overexpression was found for ahnak, encoding a 700-kDa protein, in normal CNS present only in the blood-brain barrier (BBB) forming vascular endothelial cells. Indeed, very early after spinal cord injury (SCI), high levels of membrane-associated AHNAK are observed on non-neuronal cells invading the lesion site. With time, AHNAK distribution spreads rostrally and caudally concomitant with the process of tissue inflammation and axon degeneration, delineating the interior surface of cystic cavities, mainly in front of barrier-forming astrocytes. Strong overexpression is also observed on vascular endothelial cells reacting to BBB breakdown. Based on our detailed analysis of its spatiotemporal and cellular expression, and its previously described function in BBB, we suggest that AHNAK expression is associated with cell types displaying tissue-protective barrier properties. Our study may thus contribute to the elucidation of the precise molecular and cellular events that eventually render traumatic spinal cord tissue non-permissive for regeneration.


Asunto(s)
Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Neovascularización Fisiológica , Regeneración Nerviosa , Traumatismos de la Médula Espinal , Animales , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Encéfalo/citología , Células Cultivadas , Femenino , Perfilación de la Expresión Génica , Biblioteca de Genes , Humanos , Hibridación in Situ , Proteínas de la Membrana/genética , Proteínas de Neoplasias/genética , Ratas , Ratas Wistar , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología
8.
Eur J Neurosci ; 20(10): 2605-16, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15548204

RESUMEN

The 67-kDa LR protein was originally discovered as a non-integrin laminin receptor. Several more recent in vitro studies demonstrated the function of 67-kDa LR and its related 'precursor' form 37-kDa LRP as receptors of cellular prion protein and their implication in abnormal prion protein propagation in vitro. In addition, expression of both proteins was shown to increase considerably in the brain of scrapie-infected mice and hamsters. While LRP/LR are thus likely to play important roles in neuronal cell adhesion, survival and homeostasis and during pathological disorders, little is known so far about their fine cellular distribution in adult central nervous system. Using immunocytochemistry and western blotting, we show here that the 67-kDa LR is the major receptor form in adult rat brain and spinal cord, expressed within the cytoplasm and at the plasma membrane of most neurons and in a subset of glial cells. The overall distribution of LR correlates well with that reported for laminin-1 but also with brain regions classically associated with prion-related neurodegeneration. In contrast to LR, the 37-kDa LRP form is much less abundant in adult than in postnatal central nervous system. Characterization of a novel antibody allowed us to study the distribution across tissues of cell membrane-associated LRP. Interestingly, this form is almost exclusively found on a subclass of parvalbumin-immunoreactive cortical interneurons known to degenerate during the early stages of Creutzfeldt-Jakob disease. Our demonstration of local differences in the expression of particular LRP/LR isoforms may be a first step towards unraveling their specific molecular interactions.


Asunto(s)
Sistema Nervioso Central/metabolismo , Corteza Cerebral/citología , Neuronas/metabolismo , Priones/metabolismo , Receptores de Laminina/metabolismo , Secuencia de Aminoácidos , Animales , Animales Recién Nacidos , Anticuerpos Monoclonales/metabolismo , Especificidad de Anticuerpos/fisiología , Western Blotting/métodos , Calbindinas , Membrana Celular/metabolismo , Pollos , Electroforesis en Gel Bidimensional/métodos , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Inmunohistoquímica/métodos , Masculino , Neuroglía/metabolismo , Neuronas/clasificación , Neuronas/citología , Parvalbúminas/metabolismo , Lectinas de Plantas/metabolismo , Embarazo , Precursores de Proteínas/metabolismo , Ratas , Ratas Wistar , Receptores N-Acetilglucosamina , Proteína G de Unión al Calcio S100/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...