Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37956001

RESUMEN

Guiding and manipulating GHz frequency acoustic waves in [Formula: see text]-scale waveguides and resonators open up new degrees of freedom to manipulate radio frequency (RF) signals in chip-scale platforms. A critical requirement for enabling high-performance devices is the demonstration of low acoustic dissipation in these highly confined geometries. In this work, we show that gallium nitride (GaN) on silicon carbide (SiC) supports low-loss acoustics by demonstrating acoustic microring resonators with frequency-quality factor ( fQ ) products approaching 1013 Hz at 3.4 GHz. The low dissipation measured exceeds the fQ bound set by the simplified isotropic Akhiezer material damping limit of GaN. We use this low-loss acoustics platform to demonstrate spiral delay lines with on-chip RF delays exceeding [Formula: see text], corresponding to an equivalent electromagnetic delay of ≈ 750 m. Given GaN is a well-established semiconductor with high electron mobility, this work opens up the prospect of engineering traveling wave acoustoelectric interactions in [Formula: see text]-scale waveguide geometries, with associated implications for chip-scale RF signal processing.

2.
Adv Sci (Weinh) ; 11(2): e2304449, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37974523

RESUMEN

Developing practical quantum technologies will require the exquisite manipulation of fragile systems in a robust and repeatable way. As quantum technologies move toward real world applications, from biological sensing to communication in space, increasing experimental complexity introduces constraints that can be alleviated by the introduction of new technologies. Robotics has shown tremendous progress in realizing increasingly smart, autonomous, and highly dexterous machines. Here, a robotic arm equipped with a magnet is demonstrated to sensitize an NV center quantum magnetometer in challenging conditions unachievable with standard techniques. Vector magnetic fields are generated with 1° angular and 0.1 mT amplitude accuracy and determine the orientation of a single stochastically-aligned spin-based sensor in a constrained physical environment. This work opens up the prospect of integrating robotics across many quantum degrees of freedom in constrained settings, allowing for increased prototyping speed, control, and robustness in quantum technology applications.

3.
ACS Photonics ; 10(9): 3302-3309, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37743942

RESUMEN

Diamond color centers are promising optically addressable solid-state spins that can be matter-qubits, mediate deterministic interaction between photons, and act as single photon emitters. Useful quantum computers will comprise millions of logical qubits. To become useful in constructing quantum computers, spin-photon interfaces must, therefore, become scalable and be compatible with mass-manufacturable photonics and electronics. Here, we demonstrate the heterogeneous integration of NV centers in nanodiamond with low-fluorescence silicon nitride photonics from a standard 180 nm CMOS foundry process. Nanodiamonds are positioned over predefined sites in a regular array on a waveguide in a single postprocessing step. Using an array of optical fibers, we excite NV centers selectively from an array of six integrated nanodiamond sites and collect the photoluminescence (PL) in each case into waveguide circuitry on-chip. We verify single photon emission by an on-chip Hanbury Brown and Twiss cross-correlation measurement, which is a key characterization experiment otherwise typically performed routinely with discrete optics. Our work opens up a simple and effective route to simultaneously address large arrays of individual optically active spins at scale, without requiring discrete bulk optical setups. This is enabled by the heterogeneous integration of NV center nanodiamonds with CMOS photonics.

4.
Opt Lett ; 48(15): 3861-3864, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37527068

RESUMEN

Understanding and mitigating optical loss is critical to the development of high-performance photonic integrated circuits (PICs). In particular, in high refractive index contrast compound semiconductor (III-V) PICs, surface absorption and scattering can be a significant loss mechanism, and needs to be suppressed. Here, we quantify the optical propagation loss due to surface state absorption in a suspended GaAs PIC platform, probe its origins using x-ray photoemission spectroscopy and spectroscopic ellipsometry, and show that it can be mitigated by surface passivation using alumina (Al2O3).

5.
Opt Express ; 30(18): 33288-33301, 2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36242372

RESUMEN

While silicon photonics has leveraged the nanofabrication tools and techniques from the microelectronics industry, it has also inherited the metrological methods from the same. Photonics fabrication is inherently different from microelectronics in its intrinsic sensitivity to 3D shape and geometry, especially in a high-index contrast platform like silicon-on-insulator. In this work, we show that electrical resistance measurements can in principle be used to infer the geometry of such nanophotonic structures and reconstruct the micro-loading curves of foundry etch processes. We implement our ideas to infer 3D geometries from a standard silicon photonics foundry and discuss some of the potential sources of error that need to be calibrated out. By using electrical measurements, pre-designed structures can be rapidly tested at wafer-scale, without the added complexity of optical alignment and spectral measurement and analysis, providing both a route towards predictive optical device performance and a means to control the geometry variation.

6.
Opt Lett ; 47(15): 3868-3871, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35913335

RESUMEN

Although grating couplers have become the de-facto standard for optical access to integrated silicon photonics platforms, their performance at visible wavelengths, in moderate index contrast platforms such as silicon nitride, leaves significant room for improvement. In particular, the index contrast governs the diffraction efficiency per grating tooth and the resulting overall coupler length. In this work, we develop two approaches to address this problem: a dielectric grating that sums multiple optical modes to increase the overall output intensity; and an embedded metal grating that enhances the attainable refractive index contrast, and therefore reduces the on-chip footprint. We present experimental results that can be developed to realize compact efficient visible wavelength photonic interconnects, with a view toward cryogenic deployment for quantum photonics, where space is constrained and efficiency is critical.

7.
Nano Lett ; 22(12): 4617-4621, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35652540

RESUMEN

Quantum plasmonics aims to harness the deeply subwavelength confinement provided by plasmonic devices to engineer more efficient interfaces to quantum systems in particular single emitters. Realizing this vision is hampered by the roughness-induced scattering and loss inherent in most nanofabricated devices. In this work, we show evidence of a reactive ion etching process to selectively etch gold along select crystalline facets. Since the etch is facet selective, the sidewalls of fabricated devices are smoother than the lithography induced line-edge roughness with the prospect of achieving atomic smoothness by further optimization of the etch chemistry. This opens up a route toward fabricating integrated plasmonic circuits that can achieve loss metrics close to fundamental bounds.

8.
Opt Express ; 28(8): 12262-12271, 2020 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-32403724

RESUMEN

The spectacular success of silicon-based photonic integrated circuits (PICs) in the past decade naturally begs the question of whether similar fabrication procedures can be applied to other material platforms with more desirable optical properties. In this work, we demonstrate the individual passive components (grating couplers, waveguides, multi-mode interferometers and ring resonators) necessary for building large scale integrated circuits in suspended gallium arsenide (GaAs). Implementing PICs in suspended GaAs is a viable route towards achieving optimal system performance in areas with stringent device constraints like energy efficient transceivers for exascale systems, integrated electro-optic comb lasers, integrated quantum photonics, cryogenic photonics and electromechanical guided wave acousto-optics.

9.
Opt Lett ; 44(15): 3777-3780, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31368966

RESUMEN

We report the design and characterization of high-frequency, resonant acousto-optic modulators (AOMs) in a micro-electro-mechanical systems (MEMS) foundry process. The doubly resonant cavity design, with short (L ∼10.5 µm) acoustic and optical cavity lengths, allows us to measure acousto-optic modulation at GHz frequencies with high modulation efficiency. In contrast to traditional AOMs, these devices rely on the perturbation induced by the displacement of cavity boundaries, which can be significantly enhanced in a suspended geometry. This platform can serve as the building block for fast 2D spatial light modulators, low-cost integrated free-space optical links, and optically enhanced low-noise RF receivers.

10.
Nanoscale ; 11(30): 14322-14329, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31323078

RESUMEN

Development of fluorescence enhancement (FE) platforms based on ZnO nanorods (NRs) has sparked considerable interest, thanks to their well-demonstrated potential in chemical and biological detection. Among the multiple factors determining the FE performance, high-order waveguide modes are specifically promising in boosting the sensitivity and realizing selective detection. However, quantitative experimental studies on the influence of the NR diameter, substrate, and surrounding medium, on the waveguide-based FE properties remain lacking. In this work, we have designed and fabricated a FE platform based on patterned and well-defined arrays of vertical, hexagonal prism ZnO NRs with six distinct diameters. Both direct experimental evidence and theoretical simulations demonstrate that high-order waveguide modes play a crucial role in FE, and are strongly dependent on the NR diameter, substrate, and surrounding medium. Using the optimized FE platform, a significant limit of detection (LOD) of 10-16 mol L-1 for Rhodamine-6G probe detection is achieved. Especially, a LOD as low as 10-14 g mL-1 is demonstrated for a prototype biomarker of carcinoembryonic antigen, which is improved by one order compared with the best LOD ever reported using fluorescence-based detection. This work provides an efficient path to design waveguiding NRs-based biochips for ultrasensitive and highly-selective biosensing.


Asunto(s)
Bioensayo/métodos , Colorantes Fluorescentes/química , Nanotubos/química , Biomarcadores/análisis , Antígeno Carcinoembrionario/análisis , Humanos , Inmunoensayo/métodos , Límite de Detección , Neoplasias/diagnóstico , Rodaminas/química , Óxido de Zinc/química
11.
Phys Rev Appl ; 72017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28580373

RESUMEN

Acoustic wave devices provide a promising chip-scale platform for efficiently coupling radio frequency (RF) and optical fields. Here, we use an integrated piezo-optomechanical circuit platform that exploits both the piezoelectric and photoelastic coupling mechanisms to link 2.4 GHz RF waves to 194 THz (1550 nm) optical waves, through coupling to propagating and localized 2.4 GHz acoustic waves. We demonstrate acousto-optic modulation, resonant in both the optical and mechanical domains, in which waveforms encoded on the RF carrier are mapped to the optical field. We also show opto-acoustic gating, in which the application of modulated optical pulses interferometrically gates the transmission of propagating acoustic pulses. The time-domain characteristics of this system under both pulsed RF and pulsed optical excitation are considered in the context of the different physical pathways involved in driving the acoustic waves, and modelled through the coupled mode equations of cavity optomechanics.

12.
Optica ; 4(2): 178-184, 2017 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-28584859

RESUMEN

Many photonic quantum information processing applications would benefit from a high brightness, fiber-coupled source of triggered single photons. Here, we present a fiber-coupled photonic-crystal waveguide single-photon source relying on evanescent coupling of the light field from a tapered out-coupler to an optical fiber. A two-step approach is taken where the performance of the tapered out-coupler is recorded first on an independent device containing an on-chip reflector. Reflection measurements establish that the chip-to-fiber coupling efficiency exceeds 80 %. The detailed characterization of a high-efficiency photonic-crystal waveguide extended with a tapered out-coupling section is then performed. The corresponding overall single-photon source efficiency is 10.9 % ± 2.3 %, which quantifies the success probability to prepare an exciton in the quantum dot, couple it out as a photon in the waveguide, and subsequently transfer it to the fiber. The applied out-coupling method is robust, stable over time, and broadband over several tens of nanometers, which makes it a highly promising pathway to increase the efficiency and reliability of planar chip-based single-photon sources.

13.
Nat Photonics ; 10(5): 346-352, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27446234

RESUMEN

Optomechanical cavities have been studied for applications ranging from sensing to quantum information science. Here, we develop a platform for nanoscale cavity optomechanical circuits in which optomechanical cavities supporting co-localized 1550 nm photons and 2.4 GHz phonons are combined with photonic and phononic waveguides. Working in GaAs facilitates manipulation of the localized mechanical mode either with a radio frequency (RF) field through the piezo-electric effect, which produces acoustic waves that are routed and coupled to the optomechanical cavity by phononic crystal waveguides, or optically through the strong photoelastic effect. Along with mechanical state preparation and sensitive readout, we use this to demonstrate an acoustic wave interference effect, similar to atomic coherent population trapping, in which RF-driven coherent mechanical motion is cancelled by optically-driven motion. Manipulating cavity optomechanical systems with equal facility through both photonic and phononic channels enables new architectures for signal transduction between the optical, electrical, and mechanical domains.

14.
J Res Natl Inst Stand Technol ; 121: 464-475, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-34434635

RESUMEN

This article introduces in archival form the Nanolithography Toolbox, a platform-independent software package for scripted lithography pattern layout generation. The Center for Nanoscale Science and Technology (CNST) at the National Institute of Standards and Technology (NIST) developed the Nanolithography Toolbox to help users of the CNST NanoFab design devices with complex curves and aggressive critical dimensions. Using parameterized shapes as building blocks, the Nanolithography Toolbox allows users to rapidly design and layout nanoscale devices of arbitrary complexity through scripting and programming. The Toolbox offers many parameterized shapes, including structure libraries for micro- and nanoelectromechanical systems (MEMS and NEMS) and nanophotonic devices. Furthermore, the Toolbox allows users to precisely define the number of vertices for each shape or create vectorized shapes using Bezier curves. Parameterized control allows users to design smooth curves with complex shapes. The Toolbox is applicable to a broad range of design tasks in the fabrication of microscale and nanoscale devices.

15.
Opt Express ; 21(8): 10228-33, 2013 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-23609731

RESUMEN

We demonstrate the use of a subwavelength planar metal-dielectric resonant cavity to enhance the absorption of germanium photodetectors at wavelengths beyond the material's direct absorption edge, enabling high responsivity across the entire telecommunications C and L bands. The resonant wavelength of the detectors can be tuned linearly by varying the width of the Ge fin, allowing multiple detectors, each resonant at a different wavelength, to be fabricated in a single-step process. This approach is promising for the development of CMOS-compatible devices suitable for integrated, high-speed, and energy-efficient photodetection at telecommunications wavelengths.


Asunto(s)
Germanio/química , Nanotecnología/instrumentación , Fotometría/instrumentación , Resonancia por Plasmón de Superficie/instrumentación , Telecomunicaciones/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Germanio/efectos de la radiación , Fotograbar/métodos
16.
Opt Express ; 20(20): 22735-42, 2012 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-23037424

RESUMEN

We propose and demonstrate a novel nanoscale resonant metal-semiconductor-metal (MSM) photodetector structure based on silicon fins self-aligned to metallic slits. This geometry allows the center wavelength of the photodetector's spectral response to be controlled by the silicon fin width, allowing multiple detectors, each sensitive to a different wavelength, to be fabricated in a single-step process. In addition, the detectors are highly efficient with simulations showing ~67% of the light (λ = 800 nm) incident on the silicon fin being absorbed in a region of thickness ~170 nm whereas the absorption length at the same wavelength is ~10 µm. This approach is promising for the development of multispectral imaging sensors and low-capacitance photodetectors for short-range optical interconnects.


Asunto(s)
Nanopartículas del Metal/química , Nanopartículas del Metal/efectos de la radiación , Nanotecnología/instrumentación , Fotometría/instrumentación , Semiconductores , Silicio/química , Resonancia por Plasmón de Superficie/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Luz
17.
Nano Lett ; 11(7): 2693-8, 2011 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-21627101

RESUMEN

A novel type of multiple-wavelength focusing plasmonic coupler based on a nonperiodic nanoslit array is designed and experimentally demonstrated. An array of nanoslits patterned on a thin metal film is used to couple free-space light into surface plasmon polaritons (SPPs) and simultaneously focus different-wavelength SPPs into arbitrary predefined locations in the two-dimensional plane. We design and fabricate a compact triplexer on a glass substrate with an integrated silicon photodetector. The photocurrent spectra demonstrate that the incident light is effectively coupled to SPPs and routed into three different focal spots depending on the wavelength. The proposed scheme provides a simple method of building wavelength-division multiplexing and spectral filtering elements, integrated with other plasmonic and optoelectronic devices.


Asunto(s)
Nanotecnología/instrumentación , Resonancia por Plasmón de Superficie/instrumentación , Algoritmos , Diseño de Equipo , Oro/química , Luz , Membranas Artificiales , Tamaño de la Partícula , Silicio/química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...