Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Med Sci Sports Exerc ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38875487

RESUMEN

INTRODUCTION: Increases in skeletal muscle size occur in response to prolonged exposure to resistance training that is typically ascribed to increased muscle fibre size. Whether muscle fibre number also changes remains controversial, and a paucity of data exists about myofibrillar structure. This cross-sectional study compared muscle fibre and myofibril characteristics in long-term resistance-trained (LRT) versus untrained (UNT) individuals. METHODS: The maximal anatomical cross-sectional area (ACSAmax) of the biceps brachii muscle was measured by MRI in 16 LRT (5.9 ± 3.5 years' experience) and 13 UNT males. A muscle biopsy was taken from the biceps brachii to measure muscle fibre area, myofibril area and myosin spacing. Muscle fibre number, myofibril number in total and per fibre were estimated by dividing ACSAmax by muscle fibre area or myofibril area, and muscle fibre area by myofibril area, respectively. RESULTS: Compared to UNT, LRT individuals had greater ACSAmax (+70%, P < 0.001), fibre area (+29%, P = 0.028), fibre number (+34%, P = 0.013), and myofibril number per fibre (+49%, P = 0.034) and in total (+105%, P < 0.001). LRT individuals also had smaller myosin spacing (-7%, P = 0.004; i.e. greater packing density) and a tendency towards smaller myofibril area (-16%, P = 0.074). ACSAmax was positively correlated with fibre area ( r = 0.526), fibre number ( r = 0.445) and myofibril number (in total r = 0.873 and per fibre r = 0.566), and negatively correlated with myofibril area ( r = -0.456) and myosin spacing ( r = -0.382) (all P < 0.05). CONCLUSIONS: The larger muscles of LRT individuals exhibited more fibres in cross-section and larger muscle fibres, which contained substantially more total myofibrils and more packed myofilaments than UNT participants, suggesting plasticity of muscle ultrastructure.

2.
Med Sci Sports Exerc ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38857522

RESUMEN

INTRODUCTION: The hamstring muscles play a crucial role in sprint running, but are also highly susceptible to strain injuries, particularly within the biceps femoris long head (BFlh). This study compared the adaptations in muscle size and strength of the knee flexors, as well as BFlh muscle and aponeurosis size, after two eccentrically focused knee flexion training regimes: Nordic hamstring training (NHT) or lengthened state eccentric training (LSET, isoinertial weight-stack resistance in an accentuated hip-flexed position), to habitual activity (no training controls: CON). METHODS: 42 healthy young males completed 34 sessions of NHT or LSET over 12 weeks or served as CON (n = 14/group). MRI-measured muscle volume of seven individual knee flexors and BFlh aponeurosis area, and maximum knee flexion torque during eccentric, concentric and isometric contractions were assessed pre- and post-training. RESULTS: LSET induced greater increases in hamstrings (+18% vs +11%) and BFlh (+19% vs +5%) muscle volumes and BFlh aponeurosis area (+9% vs +3%) than NHT (all P ≤ 0.001), with no changes after CON. There were distinctly different patterns of hypertrophy between the two training regimes, largely due to the functional role of the muscles; LSET was more effective for increasing the size of knee flexors that also extend the hip (2.2-fold vs NHT), whereas NHT increased the size of knee flexors that do not extend the hip (1.9-fold vs LSET; both P ≤ 0.001). Changes in maximum eccentric torque differed only between LSET and CON (+17% vs +4%; P = 0.009), with NHT (+11%) in-between. CONCLUSIONS: These results suggest that LSET is superior to NHT in inducing overall hamstrings and BFlh hypertrophy, potentially contributing to better sprint performance improvements and protection against hamstring strain injuries than NHT.

3.
Int J Sports Med ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38897227

RESUMEN

Biceps femoris long head (BFLH) aponeurosis size was compared between legs with and without prior hamstring strain injury (HSI) using within-group (injured vs. uninjured legs of previous unilateral HSI athletes) and between-group (previously injured legs of HSI athletes vs. legs of No prior HSI athletes) approaches. Currently healthy competitive male athletes with Prior HSI history (n=23; ≥1 verified BFLH injury; including a sub-group with unilateral HSI history; most recent HSI 1.6 ± 1.2 years ago) and pair-matched athletes with No prior HSI history (n=23) were MRI scanned. Anonymised axial images were manually segmented to quantify BFLH aponeurosis and muscle size. Prior unilateral HSI athletes' BFLH aponeurosis maximum width, aponeurosis area, and aponeurosis:muscle area ratio was 14.0-19.6% smaller in previously injured vs. contralateral uninjured legs (paired t-test, 0.008≤p≤0.044). BFLH aponeurosis maximum width and area were also 9.4-16.5% smaller in previously injured legs (n=28) from prior HSI athletes vs. legs (n=46) of No prior HSI athletes (unpaired t-test, 0.001≤p≤0.044). BFLH aponeurosis size was smaller in legs with Prior HSI vs. those without prior HSI. These findings suggest BFLH aponeurosis size, especially maximum width, could be a potential cause or consequence of HSI, with prospective evidence needed to support or refute these possibilities.

4.
J Appl Physiol (1985) ; 136(6): 1568-1579, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38660724

RESUMEN

There is a marked difference between males and females in sprint running performance, yet a comprehensive investigation of sex differences in the muscle morphology of sprinters, which could explain the performance differences, remains to be completed. This study compared muscle volumes of 23 individual leg muscles and 5 functional muscle groups, assessed with 3 T magnetic resonance imaging, between male (n = 31) and female (n = 22) sprinters, as well as subgroups of elite males (EM, n = 5), elite females (EF, n = 5), and performance-matched (to elite females) males (PMMEF, n = 6). Differences in muscle volume distribution between EM, EF, and unathletic male (UM) controls were also assessed. For the full cohorts, male sprinters were more muscular than their female counterparts, but the differences were nonuniform and anatomically variable, with the largest differences in the hip extensors and flexors. However, among elite sprinters the sex differences in the volume of the functional muscle groups were almost uniform (absolute volume +47-53%), and the muscle volume distribution of EM was more similar to EF than to UM (P < 0.039). For PMMEF, relative hip extensor volume, but not stature or percent body fat, differentiated for performance (PMMEF and EF < EM) rather than sex. In conclusion, although the full cohorts of sprinters showed a marked sex difference in the amount and distribution of muscle mass, elite sprinters appeared to be selected for a common muscle distribution phenotype that for these elite subgroups was a stronger effect than that of sex. Relative hip extensor muscle volume, rather than stature, percent body fat, or total relative muscle volume, appeared to be the primary determinant of the sex difference in performance.NEW & NOTEWORTHY We present novel evidence suggesting muscle volume, specifically relative hip extensor volume, may be a primary deterministic variable for the sex difference in sprint performance, such that with matched sprint times, male and female sprinters may be expected to have equivalent muscle morphology. We highlight striking similarities in distribution of leg muscle mass between elite male and female sprinters and provide evidence for the existence of a muscular distribution phenotype specific to elite sprinters, irrespective of sex.


Asunto(s)
Músculo Esquelético , Carrera , Caracteres Sexuales , Humanos , Masculino , Femenino , Músculo Esquelético/fisiología , Músculo Esquelético/anatomía & histología , Músculo Esquelético/diagnóstico por imagen , Carrera/fisiología , Adulto Joven , Adulto , Imagen por Resonancia Magnética/métodos , Atletas , Rendimiento Atlético/fisiología , Pierna/fisiología , Pierna/anatomía & histología , Factores Sexuales
5.
Med Sci Sports Exerc ; 55(11): 2083-2095, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37436929

RESUMEN

PURPOSE: Collagen peptide supplementation has been reported to enhance synthesis rates or growth in a range of musculoskeletal tissues and could enhance tendinous tissue adaptations to resistance training (RT). This double-blind placebo-controlled study aimed to determine if tendinous tissue adaptations, size (patellar tendon cross-sectional area (CSA) and vastus lateralis (VL) aponeurosis area), and mechanical properties (patellar tendon), after 15 wk of RT, could be augmented with collagen peptide (CP) versus placebo (PLA) supplementation. METHODS: Young healthy recreationally active men were randomized to consume either 15 g of CP ( n = 19) or PLA ( n = 20) once every day during a standardized program of lower-body RT (3 times a week). Measurements pre- and post-RT included patellar tendon CSA and VL aponeurosis area (via magnetic resonance imaging), and patellar tendon mechanical properties during isometric knee extension ramp contractions. RESULTS: No between-group differences were detected for any of the tendinous tissue adaptations to RT (ANOVA group-time, 0.365 ≤ P ≤ 0.877). There were within-group increases in VL aponeurosis area (CP, +10.0%; PLA, +9.4%), patellar tendon stiffness (CP, +17.3%; PLA, +20.9%) and Young's modulus (CP, +17.8%; PLA, +20.6%) in both groups (paired t -tests (all), P ≤ 0.007). There were also within-group decreases in patellar tendon elongation (CP, -10.8%; PLA, -9.6%) and strain (CP, -10.6%; PLA, -8.9%) in both groups (paired t -tests (all), P ≤ 0.006). Although no within-group changes in patellar tendon CSA (mean or regional) occurred for CP or PLA, a modest overall time effect ( n = 39) was observed for mean (+1.4%) and proximal region (+2.4%) patellar tendon CSA (ANOVA, 0.017 ≤ P ≤ 0.048). CONCLUSIONS: In conclusion, CP supplementation did not enhance RT-induced tendinous tissue remodeling (either size or mechanical properties) compared with PLA within a population of healthy young men.


Asunto(s)
Ligamento Rotuliano , Entrenamiento de Fuerza , Masculino , Humanos , Entrenamiento de Fuerza/métodos , Tendones , Ligamento Rotuliano/diagnóstico por imagen , Colágeno , Péptidos , Poliésteres/farmacología , Músculo Esquelético
6.
Scand J Med Sci Sports ; 33(10): 2009-2024, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37350104

RESUMEN

Aging involves a marked decline in physical function and especially muscle power. Thus, optimal resistance exercise (RE) to improve muscle power is required for exercise prescription. An eccentric lowering phase immediately before a concentric lift (ECC-CON) may augment concentric power production, due to various proposed mechanisms (e.g., elastic recoil, pre-activation, stretch reflex, contractile history), when compared with a concentric contraction alone (CON-Only). This study compared the effect of a prior eccentric lowering phase on older adult concentric power performance (ECC-CON vs. CON-Only) during a common multiple joint isoinertial RE (i.e., leg press) with a range of loads. Twelve healthy older adult males completed two measurement sessions, consisting of ECC-CON and CON-Only contractions, performed in a counterbalanced order using 20-80% of one repetition maximum [% 1RM] loads on an instrumented isoinertial leg press dynamometer that measured power, force, and velocity. Muscle activation was assessed with surface electromyography (sEMG). For mean power ECC-CON>CON-Only, with a pronounced effect of load on the augmentation of power by ECC-CON (+19 to +55%, 35-80% 1RM, all p < 0.032). Similarly, for mean velocity ECC-CON>CON-Only, especially as load increased (+15 to 54%, 20-80% 1RM, all p < 0.005), but mean force showed more modest benefits of ECC-CON (+9 to 14%, 50-80% 1RM, all p < 0.05). In contrast, peak power and velocity were similar for ECC-CON and CON-Only with all loads. Knee and hip extensor sEMG were similar for both types of contractions. In conclusion, ECC-CON contractions produced greater power, and velocity performance in older adults than CON-Only and may provide a superior stimulus for chronic power development.


Asunto(s)
Músculo Esquelético , Entrenamiento de Fuerza , Masculino , Humanos , Anciano , Músculo Esquelético/fisiología , Contracción Muscular/fisiología , Electromiografía , Ejercicio Físico
7.
J Physiol ; 601(10): 1719-1744, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36946417

RESUMEN

We describe a novel application of methodology for high-density surface electromyography (HDsEMG) decomposition to identify motor unit (MU) firings in response to transcranial magnetic stimulation (TMS). The method is based on the MU filter estimation from HDsEMG decomposition with convolution kernel compensation during voluntary isometric contractions and its application to contractions elicited by TMS. First, we simulated synthetic HDsEMG signals during voluntary contractions followed by simulated motor evoked potentials (MEPs) recruiting an increasing proportion of the motor pool. The estimation of MU filters from voluntary contractions and their application to elicited contractions resulted in high (>90%) precision and sensitivity of MU firings during MEPs. Subsequently, we conducted three experiments in humans. From HDsEMG recordings in first dorsal interosseous and tibialis anterior muscles, we demonstrated an increase in the number of identified MUs during MEPs evoked with increasing stimulation intensity, low variability in the MU firing latency and a proportion of MEP energy accounted for by decomposition similar to voluntary contractions. A negative relationship between the MU recruitment threshold and the number of identified MU firings was exhibited during the MEP recruitment curve, suggesting orderly MU recruitment. During isometric dorsiflexion we also showed a negative association between voluntary MU firing rate and the number of firings of the identified MUs during MEPs, suggesting a decrease in the probability of MU firing during MEPs with increased background MU firing rate. We demonstrate accurate identification of a large population of MU firings in a broad recruitment range in response to TMS via non-invasive HDsEMG recordings. KEY POINTS: Transcranial magnetic stimulation (TMS) of the scalp produces multiple descending volleys, exciting motor pools in a diffuse manner. The characteristics of a motor pool response to TMS have been previously investigated with intramuscular electromyography (EMG), but this is limited in its capacity to detect many motor units (MUs) that constitute a motor evoked potential (MEP) in response to TMS. By simulating synthetic signals with known MU firing patterns, and recording high-density EMG signals from two human muscles, we show the feasibility of identifying firings of many MUs that comprise a MEP. We demonstrate the identification of firings of a large population of MUs in the broad recruitment range, up to maximal MEP amplitude, with fewer required stimuli compared to intramuscular EMG recordings. The methodology demonstrates an emerging possibility to study responses to TMS on a level of individual MUs in a non-invasive manner.


Asunto(s)
Músculo Esquelético , Estimulación Magnética Transcraneal , Humanos , Electromiografía/métodos , Músculo Esquelético/fisiología , Contracción Isométrica/fisiología , Potenciales Evocados Motores , Contracción Muscular/fisiología
8.
J Physiol ; 601(10): 1831-1850, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36929484

RESUMEN

Because of the biophysical relation between muscle fibre diameter and the propagation velocity of action potentials along the muscle fibres, motor unit conduction velocity could be a non-invasive index of muscle fibre size in humans. However, the relation between motor unit conduction velocity and fibre size has been only assessed indirectly in animal models and in human patients with invasive intramuscular EMG recordings, or it has been mathematically derived from computer simulations. By combining advanced non-invasive techniques to record motor unit activity in vivo, i.e. high-density surface EMG, with the gold standard technique for muscle tissue sampling, i.e. muscle biopsy, here we investigated the relation between the conduction velocity of populations of motor units identified from the biceps brachii muscle, and muscle fibre diameter. We demonstrate the possibility of predicting muscle fibre diameter (R2  = 0.66) and cross-sectional area (R2  = 0.65) from conduction velocity estimates with low systematic bias (∼2% and ∼4% respectively) and a relatively low margin of individual error (∼8% and ∼16%, respectively). The proposed neuromuscular interface opens new perspectives in the use of high-density EMG as a non-invasive tool to estimate muscle fibre size without the need of surgical biopsy sampling. The non-invasive nature of high-density surface EMG for the assessment of muscle fibre size may be useful in studies monitoring child development, ageing, space and exercise physiology, although the applicability and validity of the proposed methodology need to be more directly assessed in these specific populations by future studies. KEY POINTS: Because of the biophysical relation between muscle fibre size and the propagation velocity of action potentials along the sarcolemma, motor unit conduction velocity could represent a potential non-invasive candidate for estimating muscle fibre size in vivo. This relation has been previously assessed in animal models and humans with invasive techniques, or it has been mathematically derived from simulations. By combining high-density surface EMG with muscle biopsy, here we explored the relation between the conduction velocity of populations of motor units and muscle fibre size in healthy individuals. Our results confirmed that motor unit conduction velocity can be considered as a novel biomarker of fibre size, which can be adopted to predict muscle fibre diameter and cross-sectional area with low systematic bias and margin of individual error. The proposed neuromuscular interface opens new perspectives in the use of high-density EMG as a non-invasive tool to estimate muscle fibre size without the need of surgical biopsy sampling.


Asunto(s)
Fibras Musculares Esqueléticas , Conducción Nerviosa , Niño , Humanos , Electromiografía/métodos , Conducción Nerviosa/fisiología , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/fisiología , Potenciales de Acción/fisiología
9.
Acta Physiol (Oxf) ; 237(2): e13903, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36433662

RESUMEN

AIM: Bioactive collagen peptides (CP) have been suggested to augment the functional, structural (size and architecture), and contractile adaptations of skeletal muscle to resistance training (RT), but with limited evidence. This study aimed to determine if CP vs. placebo (PLA) supplementation enhanced the functional and underpinning structural, and contractile adaptations after 15 weeks of lower body RT. METHODS: Young healthy males were randomized to consume either 15 g of CP (n = 19) or PLA (n = 20) once every day during a standardized program of progressive knee extensor, knee flexor, and hip extensor RT 3 times/wk. Measurements pre- and post-RT included: knee extensor and flexor isometric strength; quadriceps, hamstrings, and gluteus maximus volume with MRI; evoked twitch contractions, 1RM lifting strength, and architecture (with ultrasound) of the quadriceps. RESULTS: Percentage changes in maximum strength (isometric or 1RM) did not differ between-groups (0.684 ≤ p ≤ 0.929). Increases in muscle volume were greater (quadriceps 15.2% vs. 10.3%; vastus medialis (VM) 15.6% vs. 9.7%; total muscle volume 15.7% vs. 11.4%; [all] p ≤ 0.032) or tended to be greater (hamstring 16.5% vs. 12.8%; gluteus maximus 16.6% vs. 12.9%; 0.089 ≤ p ≤ 0.091) for CP vs. PLA. There were also greater increases in twitch peak torque (22.3% vs. 12.3%; p = 0.038) and angle of pennation of the VM (16.8% vs. 5.8%, p = 0.046), but not other muscles, for CP vs. PLA. CONCLUSIONS: CP supplementation produced a cluster of consistent effects indicating greater skeletal muscle remodeling with RT compared to PLA. Notably, CP supplementation amplified the quadriceps and total muscle volume increases induced by RT.


Asunto(s)
Entrenamiento de Fuerza , Masculino , Humanos , Fuerza Muscular , Músculo Esquelético/fisiología , Músculo Cuádriceps/fisiología , Torque , Poliésteres/farmacología , Contracción Isométrica
10.
Med Sci Sports Exerc ; 54(12): 2138-2148, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36170567

RESUMEN

INTRODUCTION: A paucity of research exists examining the importance of muscle morphological and functional characteristics for elite female sprint performance. PURPOSE: This study aimed to compare lower body muscle volumes and vertical jumping power between elite and subelite female sprinters and assess the relationships of these characteristics with sprint race and acceleration performance. METHODS: Five elite (100 m seasons best [SBE 100 ], 11.16 ± 0.06 s) and 17 subelite (SBE 100 , 11.84 ± 0.42 s) female sprinters underwent: 3T magnetic resonance imaging to determine the volume of 23 individual leg muscles/compartments and five functional muscle groups; countermovement jump and 30 m acceleration tests. RESULTS: Total absolute lower body muscle volume was higher in elite versus subelite sprinters (+15%). Elite females exhibited greater muscle volume of the hip flexors (absolute, +28%; relative [to body mass], +19%), hip extensors (absolute, +22%; relative, +14%), and knee extensors (absolute, +21%), demonstrating pronounced anatomically specific muscularity, with relative hip flexor volume alone explaining 48% of sprint performance variability. The relative volume of five individual muscles (sartorius, gluteus maximus, adductor magnus, vastus lateralis, illiopsoas) were both distinct between groups (elite > subelite) and related to SBE 100 ( r = 0.553-0.639), with the combination of the sartorius (41%) and the adductor magnus (17%) explaining 58% of the variance in SBE 100 . Elite female sprinters demonstrated greater absolute countermovement jump power versus subelite, and absolute and relative power were related to both SBE 100 ( r = -0.520 to -0.741) and acceleration performance ( r = 0.569 to 0.808). CONCLUSIONS: This investigation illustrates the distinctive, anatomically specific muscle volume distribution that facilitates elite sprint running in females, and emphasizes the importance of hip flexor and extensor relative muscle volume.


Asunto(s)
Rendimiento Atlético , Carrera , Humanos , Femenino , Carrera/fisiología , Músculo Esquelético/fisiología , Músculo Cuádriceps/fisiología , Pierna , Extremidad Inferior/fisiología , Rendimiento Atlético/fisiología
11.
J Neural Eng ; 19(4)2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35853438

RESUMEN

Objective.High-density surface electromyography (HD-sEMG) allows the reliable identification of individual motor unit (MU) action potentials. Despite the accuracy in decomposition, there is a large variability in the number of identified MUs across individuals and exerted forces. Here we present a systematic investigation of the anatomical and neural factors that determine this variability.Approach. We investigated factors of influence on HD-sEMG decomposition, such as synchronization of MU discharges, distribution of MU territories, muscle-electrode distance (MED-subcutaneous adipose tissue thickness), maximum anatomical cross-sectional area (ACSAmax), and fiber cross-sectional area. For this purpose, we recorded HD-sEMG signals, ultrasound and magnetic resonance images, and took a muscle biopsy from the biceps brachii muscle from 30 male participants drawn from two groups to ensure variability within the factors-untrained-controls (UT = 14) and strength-trained individuals (ST = 16). Participants performed isometric ramp contractions with elbow flexors (at 15%, 35%, 50% and 70% maximum voluntary torque-MVT). We assessed the correlation between the number of accurately detected MUs by HD-sEMG decomposition and each measured parameter, for each target force level. Multiple regression analysis was then applied.Main results.ST subjects showed lower MED (UT = 5.1 ± 1.4 mm; ST = 3.8 ± 0.8 mm) and a greater number of identified MUs (UT: 21.3 ± 10.2 vs ST: 29.2 ± 11.8 MUs/subject across all force levels). The entire cohort showed a negative correlation between MED and the number of identified MUs at low forces (r= -0.6,p= 0.002 at 15% MVT). Moreover, the number of identified MUs was positively correlated to the distribution of MU territories (r= 0.56,p= 0.01) and ACSAmax(r= 0.48,p= 0.03) at 15% MVT. By accounting for all anatomical parameters, we were able to partly predict the number of decomposed MUs at low but not at high forces.Significance.Our results confirmed the influence of subcutaneous tissue on the quality of HD-sEMG signals and demonstrated that MU spatial distribution and ACSAmaxare also relevant parameters of influence for current decomposition algorithms.


Asunto(s)
Contracción Isométrica , Músculo Esquelético , Brazo/fisiología , Electromiografía/métodos , Humanos , Contracción Isométrica/fisiología , Masculino , Músculo Esquelético/fisiología , Torque
12.
Eur J Appl Physiol ; 122(7): 1639-1655, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35429294

RESUMEN

PURPOSE: Neuromuscular power is critical for healthy ageing. Conventional older adult resistance training (RT) guidelines typically recommend lifting slowly (2-s; CONV), whereas fast/explosive contractions performed either non-ballistically (FAST-NB) or ballistically (FAST-B, attempting to throw the load) may involve greater acute power production, and could ultimately provide a greater chronic power adaptation stimulus. To compare the neuromechanics (power, force, velocity, and muscle activation) of different types of concentric isoinertial RT contractions in older adults. METHODS: Twelve active older adult males completed three sessions, each randomly assigned to one type of concentric contraction (CONV or FAST-NB or FAST-B). Each session involved lifting a range of loads (20-80%1RM) using an instrumented isoinertial leg press dynamometer that measured power, force, and velocity. Muscle activation was assessed with surface electromyography (sEMG). RESULTS: Peak and mean power were markedly different, according to the concentric contraction explosive intent FAST-B > FAST-NB > CONV, with FAST-B producing substantially more power (+ 49 to 1172%, P ≤ 0.023), force (+ 10 to 136%, P < 0.05) and velocity (+ 55 to 483%, P ≤ 0.025) than CONV and FAST-NB contractions. Knee and hip extensor sEMG were typically higher during FAST-B than CON (all P < 0.02) and FAST-NB (≤ 50%1RM, P ≤ 0.001). CONCLUSIONS: FAST-B contractions produced markedly greater power, force, velocity and muscle activation across a range of loads than both CONV or FAST-NB and could provide a more potent RT stimulus for the chronic development of older adult power.


Asunto(s)
Entrenamiento de Fuerza , Anciano , Electromiografía , Ejercicio Físico/fisiología , Humanos , Masculino , Fuerza Muscular/fisiología , Músculo Esquelético/fisiología , Levantamiento de Peso/fisiología
13.
Scand J Med Sci Sports ; 32(4): 685-697, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34978747

RESUMEN

The purpose of this cross-sectional study was to compare explosive strength and underpinning contractile, hypertrophic, and neuromuscular activation characteristics of long-term maximum strength-trained (LT-MST; ie, ≥3 years of consistent, regular knee extensor training) and untrained individuals. Sixty-three healthy young men (untrained [UNT] n = 49, and LT-MST n = 14) performed isometric maximum and explosive voluntary, as well as evoked octet knee extension contractions. Torque, quadriceps, and hamstring surface EMG were recorded during all tasks. Quadriceps anatomical cross-sectional area (QACSAMAX ; via MRI) was also assessed. Maximum voluntary torque (MVT; +66%) and QACSAMAX (+54%) were greater for LT-MST than UNT ([both] p < 0.001). Absolute explosive voluntary torque (25-150 ms after torque onset; +41 to +64%; [all] p < 0.001; 1.15≤ effect size [ES]≤2.36) and absolute evoked octet torque (50 ms after torque onset; +43, p < 0.001; ES = 3.07) were greater for LT-MST than UNT. However, relative (to MVT) explosive voluntary torque was lower for LT-MST than UNT from 100 to 150 ms after contraction onset (-11% to -16%; 0.001 ≤ p ≤ 0.002; 0.98 ≤ ES ≤ 1.11). Relative evoked octet torque 50 ms after onset was lower (-10%; p < 0.001; ES = 1.14) and octet time to peak torque longer (+8%; p = 0.001; ES = 1.18) for LT-MST than UNT indicating slower contractile properties, independent from any differences in torque amplitude. The greater absolute explosive strength of the LT-MST group was attributable to higher evoked explosive strength, that in turn appeared to be due to larger quadriceps muscle size, rather than any differences in neuromuscular activation. In contrast, the inferior relative explosive strength of LT-MST appeared to be underpinned by slower intrinsic/evoked contractile properties.


Asunto(s)
Sustancias Explosivas , Entrenamiento de Fuerza , Estudios Transversales , Electromiografía , Humanos , Contracción Isométrica/fisiología , Masculino , Fuerza Muscular/fisiología , Músculo Esquelético/fisiología , Músculo Cuádriceps/fisiología , Torque
14.
J Appl Physiol (1985) ; 131(5): 1584-1598, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34617822

RESUMEN

Neural and morphological adaptations combine to underpin the enhanced muscle strength following prolonged exposure to strength training, although their relative importance remains unclear. We investigated the contribution of motor unit (MU) behavior and muscle size to submaximal force production in chronically strength-trained athletes (ST) versus untrained controls (UT). Sixteen ST (age: 22.9 ± 3.5 yr; training experience: 5.9 ± 3.5 yr) and 14 UT (age: 20.4 ± 2.3 yr) performed maximal voluntary isometric force (MViF) and ramp contractions (at 15%, 35%, 50%, and 70% MViF) with elbow flexors, whilst high-density surface electromyography (HDsEMG) was recorded from the biceps brachii (BB). Recruitment thresholds (RTs) and discharge rates (DRs) of MUs identified from the submaximal contractions were assessed. The neural drive-to-muscle gain was estimated from the relation between changes in force (ΔFORCE, i.e. muscle output) relative to changes in MU DR (ΔDR, i.e. neural input). BB maximum anatomical cross-sectional area (ACSAMAX) was also assessed by MRI. MViF (+64.8% vs. UT, P < 0.001) and BB ACSAMAX (+71.9%, P < 0.001) were higher in ST. Absolute MU RT was higher in ST (+62.6%, P < 0.001), but occurred at similar normalized forces. MU DR did not differ between groups at the same normalized forces. The absolute slope of the ΔFORCE - ΔDR relationship was higher in ST (+66.9%, P = 0.002), whereas it did not differ for normalized values. We observed similar MU behavior between ST athletes and UT controls. The greater absolute force-generating capacity of ST for the same neural input demonstrates that morphological, rather than neural, factors are the predominant mechanism for their enhanced force generation during submaximal efforts.NEW & NOTEWORTHY In this study, we observed that recruitment strategies and discharge characteristics of large populations of motor units identified from biceps brachii of strength-trained athletes were similar to those observed in untrained individuals during submaximal force tasks. We also found that for the same neural input, strength-trained athletes are able to produce greater absolute muscle forces (i.e., neural drive-to-muscle gain). This demonstrates that morphological factors are the predominant mechanism for the enhanced force generation during submaximal efforts.


Asunto(s)
Contracción Isométrica , Entrenamiento de Fuerza , Adaptación Fisiológica , Adolescente , Adulto , Electromiografía , Humanos , Fuerza Muscular , Músculo Esquelético , Adulto Joven
16.
J Appl Physiol (1985) ; 131(2): 702-715, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34166110

RESUMEN

This study compared elbow flexor (EF; experiment 1) and knee extensor (KE; experiment 2) maximal compound action potential (Mmax) amplitude between long-term resistance trained (LTRT; n = 15 and n = 14, 6 ± 3 and 4 ± 1 yr of training) and untrained (UT; n = 14 and n = 49) men, and examined the effect of normalizing electromyography (EMG) during maximal voluntary torque (MVT) production to Mmax amplitude on differences between LTRT and UT. EMG was recorded from multiple sites and muscles of EF and KE, Mmax was evoked with percutaneous nerve stimulation, and muscle size was assessed with ultrasonography (thickness, EF) and magnetic resonance imaging (cross-sectional area, KE). Muscle-electrode distance (MED) was measured to account for the effect of adipose tissue on EMG and Mmax. LTRT displayed greater MVT (+66%-71%, P < 0.001), muscle size (+54%-56%, P < 0.001), and Mmax amplitudes (+29%-60%, P ≤ 0.010) even when corrected for MED (P ≤ 0.045). Mmax was associated with the size of both muscle groups (r ≥ 0.466, P ≤ 0.011). Compared with UT, LTRT had higher absolute voluntary EMG amplitude for the KE (P < 0.001), but not the EF (P = 0.195), and these differences/similarities were maintained after correction for MED; however, Mmax normalization resulted in no differences between LTRT and UT for any muscle and/or muscle group (P ≥ 0.652). The positive association between Mmax and muscle size, and no differences when accounting for peripheral electrophysiological properties (EMG/Mmax), indicates the greater absolute voluntary EMG amplitude of LTRT might be confounded by muscle morphology, rather than providing a discrete measure of central neural activity. This study therefore suggests limited agonist neural adaptation after LTRT.NEW & NOTEWORTHY In a large sample of long-term resistance-trained individuals, we showed greater maximal M-wave amplitude of the elbow flexors and knee extensors compared with untrained individuals, which appears to be at least partially mediated by differences in muscle size. The lack of group differences in voluntary EMG amplitude when normalized to maximal M-wave suggests that differences in muscle morphology might impair interpretation of voluntary EMG as an index of central neural activity.


Asunto(s)
Entrenamiento de Fuerza , Adaptación Fisiológica , Electromiografía , Humanos , Contracción Isométrica , Masculino , Contracción Muscular , Músculo Esquelético , Músculo Cuádriceps
17.
Med Sci Sports Exerc ; 53(10): 2140-2151, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33935234

RESUMEN

PURPOSE: This study aimed to determine the best muscle size index of muscle strength by establishing if incorporating muscle architecture measurements improved the human muscle size-strength relationship. The influence of calculating muscle force and the location of anatomical cross-sectional area (ACSA) measurements on this relationship were also examined. METHODS: Fifty-two recreationally active men completed unilateral isometric knee extension strength assessments and magnetic resonance imaging scans of the dominant thigh and knee to determine quadriceps femoris size variables (ACSA along the length of the femur, maximum ACSA (ACSAMAX), and volume (VOL)) and patellar tendon moment arm. Ultrasound images (two sites per constituent muscle) were analyzed to quantify muscle architecture (fascicle length, pennation angle) and, when combined with VOL (from magnetic resonance imaging), facilitated calculation of quadriceps femoris effective PCSA (EFFPCSA) as potentially the best muscle size determinant of strength. Muscle force was calculated by dividing maximum voluntary torque by the moment arm and addition of antagonist torque (derived from hamstring EMG). RESULTS: The associations of EFFPCSA (r = 0.685), ACSAMAX (r = 0.697), or VOL (r = 0.773) with strength did not differ, although qualitatively VOL explained 59.8% of the variance in strength, ~11%-13% greater than EFFPCSA or ACSAMAX. All muscle size variables had weaker associations with muscle force than maximum voluntary torque. The association of strength-ACSA at 65% of femur length (r = 0.719) was greater than for ACSA measured between 10%-55% and 75%-90% (r = -0.042-0.633) of femur length. CONCLUSIONS: In conclusion, using contemporary methods to assess muscle architecture and calculate EFFPCSA did not enhance the muscle strength-size association. For understanding/monitoring muscle size, the major determinant of strength, these findings support the assessment of muscle volume, which is independent of architecture measurements and was most highly correlated with strength.


Asunto(s)
Fuerza Muscular , Músculo Cuádriceps/anatomía & histología , Músculo Cuádriceps/fisiología , Adulto , Humanos , Rodilla/diagnóstico por imagen , Rodilla/fisiología , Imagen por Resonancia Magnética , Masculino , Ligamento Rotuliano/fisiología , Músculo Cuádriceps/diagnóstico por imagen , Muslo/anatomía & histología , Muslo/diagnóstico por imagen , Muslo/fisiología , Torque , Ultrasonografía , Adulto Joven
18.
Eur J Neurosci ; 53(10): 3416-3432, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33763908

RESUMEN

It is poorly understood how the central nervous system adapts to resistance training, especially after years of exposure. We compared corticospinal excitability and motor representation assessed with transcranial magnetic stimulation (TMS) between long-term resistance trained (LRT, ≥3 years) versus untrained (UNT) males (n = 15/group). Motor-evoked potentials (MEPs) were obtained from the biceps brachii during isometric elbow flexion. Stimulus-response curves were created at the hotspot during 10% maximum voluntary torque (MVT) contractions. Maximum peak-to-peak MEP amplitude (MEPmax) was acquired with 100% stimulator output intensity, whilst 25%-100% MVT was produced. Maps were created during 10% MVT contractions, with an individualised TMS intensity eliciting 20% MEPmax at the hotspot. LRT had a 48% lower stimulus-response curve slope than UNT (p < .05). LRT also had a 66% larger absolute map size, although TMS intensity used for mapping was greater in LRT versus UNT (48% vs. 26% above active motor threshold) to achieve a target 20% MEPmax at the hotspot, due to the lower slope of LRT. Map size was strongly correlated with the TMS intensity used for mapping (r = 0.776, p < .001). Once map size was normalised to TMS intensity, there was no difference between the groups (p = .683). We conclude that LRT had a lower stimulus-response curve slope/excitability, suggesting higher neural efficiency. TMS map size was overwhelmingly determined by TMS intensity, even when the MEP response at the hotspot was matched among individuals, likely due to larger current spread with higher intensities. Motor representation appears similar between LRT and UNT given no difference in the normalised map size.


Asunto(s)
Entrenamiento de Fuerza , Brazo , Electromiografía , Potenciales Evocados Motores , Humanos , Masculino , Músculo Esquelético , Tractos Piramidales , Estimulación Magnética Transcraneal
19.
Med Sci Sports Exerc ; 53(4): 804-815, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33009196

RESUMEN

PURPOSE: This study aimed to investigate the differences in muscle volumes and strength between male elite sprinters, sub-elite sprinters, and untrained controls and to assess the relationships of muscle volumes and strength with sprint performance. METHODS: Five elite sprinters (100-m season's best equivalent [SBE100], 10.10 ± 0.07 s), 26 sub-elite sprinters (SBE100, 10.80 ± 0.30 s), and 11 untrained control participants underwent 1) 3-T magnetic resonance imaging scans to determine the volume of 23 individual lower limb muscles/compartments and 5 functional muscle groups and 2) isometric strength assessment of lower body muscle groups. RESULTS: Total lower body muscularity was distinct between the groups (controls < sub-elite +20% < elite +48%). The hip extensors exhibited the largest muscle group differences/relationships (elite, +32% absolute and +15% relative [per kg] volume, vs sub-elite explaining 31%-48% of the variability in SBE100), whereas the plantarflexors showed no differences between sprint groups. Individual muscle differences showed pronounced anatomical specificity (elite vs sub-elite absolute volume range, +57% to -9%). Three hip muscles were consistently larger in elite vs sub-elite (tensor fasciae latae, sartorius, and gluteus maximus; absolute, +45%-57%; relative volume, +25%-37%), and gluteus maximus volume alone explained 34%-44% of the variance in SBE100. The isometric strength of several muscle groups was greater in both sprint groups than controls but similar for the sprint groups and not related to SBE100. CONCLUSIONS: These findings demonstrate the pronounced inhomogeneity and anatomically specific muscularity required for fast sprinting and provides novel, robust evidence that greater hip extensor and gluteus maximus volumes discriminate between elite and sub-elite sprinters and are strongly associated with sprinting performance.


Asunto(s)
Atletas , Fuerza Muscular/fisiología , Músculo Esquelético/anatomía & histología , Músculo Esquelético/fisiología , Carrera , Adulto , Nalgas , Cadera , Humanos , Contracción Isométrica , Extremidad Inferior/anatomía & histología , Extremidad Inferior/diagnóstico por imagen , Extremidad Inferior/fisiología , Imagen por Resonancia Magnética , Masculino , Músculo Esquelético/diagnóstico por imagen , Muslo , Adulto Joven
20.
J Appl Physiol (1985) ; 128(4): 1000-1011, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31873069

RESUMEN

The greater muscular strength of long-term resistance-trained (LTT) individuals is often attributed to hypertrophy, but the role of other factors, notably maximum voluntary specific tension (ST), muscle architecture, and any differences in joint mechanics (moment arm), have not been documented. The aim of the present study was to examine the musculoskeletal factors that might explain the greater quadriceps strength and size of LTT vs. untrained (UT) individuals. LTT (n = 16, age 21.6 ± 2.0 yr) had 4.0 ± 0.8 yr of systematic knee extensor heavy-resistance training experience, whereas UT (n = 52; age 25.1 ± 2.3 yr) had no lower-body resistance training experience for >18 mo. Knee extension dynamometry, T1-weighted magnetic resonance images of the thigh and knee, and ultrasonography of the quadriceps muscle group at 10 locations were used to determine quadriceps: isometric maximal voluntary torque (MVT), muscle volume (QVOL), patella tendon moment arm (PTMA), pennation angle (QΘP) and fascicle length (QFL), physiological cross-sectional area (QPCSA), and ST. LTT had substantially greater MVT (+60% vs. UT, P < 0.001) and QVOL (+56%, P < 0.001) and QPCSA (+41%, P < 0.001) but smaller differences in ST (+9%, P < 0.05) and moment arm (+4%, P < 0.05), and thus muscle size was the primary explanation for the greater strength of LTT. The greater muscle size (volume) of LTT was primarily attributable to the greater QPCSA (+41%; indicating more sarcomeres in parallel) rather than the more modest difference in FL (+11%; indicating more sarcomeres in series). There was no evidence in the present study for regional hypertrophy after LTT.NEW & NOTEWORTHY Here we demonstrate that the larger muscle strength (+60%) of a long-term (4+ yr) resistance-trained group compared with untrained controls was due to their similarly larger muscle volume (+56%), primarily due to a larger physiological cross-sectional area and modest differences in fascicle length, as well as modest differences in maximum voluntary specific tension and patella tendon moment arm. In addition, the present study refutes the possibility of regional hypertrophy, despite large differences in muscle volume.


Asunto(s)
Músculo Esquelético , Entrenamiento de Fuerza , Adulto , Humanos , Contracción Isométrica , Fuerza Muscular , Músculo Esquelético/diagnóstico por imagen , Músculo Cuádriceps/diagnóstico por imagen , Torque , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA