Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Front Oncol ; 14: 1371384, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38737910

RESUMEN

Introduction: Prostate cancer (PCa) is a prevalent malignancy in European men, often treated with radiotherapy (RT) for localized disease. While modern RT achieves high success rates, concerns about late gastrointestinal (GI) toxicities persist. This retrospective study aims to identify predictors for late GI toxicities following definitive conventionally fractionated external beam RT (EBRT) for PCa, specifically exploring the dose to the rectal wall. Materials and methods: A cohort of 96 intermediate- to high-risk PCa patients underwent EBRT between 2008 and 2016. Rectum and rectum wall contours were delineated, and 3D dose matrices were extracted. Volumetric and dosimetric indices were computed, and statistical analyses were performed to identify predictors using the Mann-Whitney U-rank test, logistic regression, and recursive feature elimination. Results: In our cohort, 15 out of 96 patients experienced grade II late proctitis. Our analysis reveals distinct optimal predictors for rectum and rectum wall (RW) structures varying with α/ß values (3.0 and 2.3 Gy) across prescribed doses of 68 to 76 Gy. Despite variability, RW predictors demonstrate greater consistency, notably V68Gy[%] to V74Gy[%] for α/ß 3.0 Gy, and V68Gy[%] to V70Gy[%] for α/ß 2.3 Gy. The model with α/ß 2.3 Gy, featuring RW volume receiving 70 Gy (V70Gy[%]), stands out with a BIC value of 62.92, indicating its superior predictive effectiveness. Finally, focusing solely on the rectum structure, the V74Gy[%] emerges the best predictor for α/ß 3.0 Gy, with a BIC value of 66.73. Conclusion: This investigation highlights the critical role of V70Gy[%] in the rectum wall as a robust predictor for grade II late gastrointestinal (GI) toxicity following external beam radiation therapy (EBRT) for prostate cancer (PCa). Furthermore, our findings suggest that focusing on the rectum wall specifically, rather than the entire rectum, may offer improved accuracy in assessing proctitis development. A V70Gy (in EQD2 with α/ß 2.3 Gy) of ≤5% and if possible ≤1% for the rectal wall should be achieved to minimize the risk of late grade II proctitis.

2.
EJNMMI Phys ; 11(1): 43, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722446

RESUMEN

BACKGROUND: The purpose of this study was to evaluate how a retrospective correction of the partial volume effect (PVE) in [18F]fluoromisonidazole (FMISO) PET imaging, affects the hypoxia discoverability within a gross tumour volume (GTV). This method is based on recovery coefficients (RC) and is tailored for low-contrast tracers such as FMISO. The first stage was the generation of the scanner's RC curves, using spheres with diameters from 10 to 37 mm, and the same homogeneous activity concentration, positioned in lower activity concentration background. Six sphere-to-background contrast ratios were used, from 10.0:1, down to 2.0:1, in order to investigate the dependence of RC on both the volume and the contrast ratio. The second stage was to validate the recovery-coefficient correction method in a more complex environment of non-spherical lesions of different volumes and inhomogeneous activity concentration. Finally, we applied the correction method to a clinical dataset derived from a prospective imaging trial (DRKS00003830): forty nine head and neck squamous cell carcinoma (HNSCC) cases who had undergone FMISO PET/CT scanning for the quantification of tumour hypoxia before (W0), 2 weeks (W2) and 5 weeks (W5) after the beginning of radiotherapy. Here, PVE was found to cause an underestimation of the activity in small volumes with high FMISO signal. RESULTS: The application of the proposed correction method resulted in a statistically significant increase of both the hypoxic subvolume (171% at W0, 691% at W2 and 4.60 × 103% at W5 with p < 0.001) and the FMISO standardised uptake value (SUV) (27% at W0, 21% at W2 and by 25% at W5 with p < 0.001) within the primary GTV. CONCLUSIONS: The proposed PVE-correction method resulted in a statistically significant increase of the hypoxic fraction (HF) with p < 0.001 and demonstrated results in better agreement with published HF data for HNSCC. To summarise, the proposed RC-based correction method can be a useful tool for a retrospective compensation against PVE.

3.
Radiat Oncol ; 19(1): 53, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689338

RESUMEN

PURPOSE: The number of older adults with head and neck squamous cell carcinoma (HNSCC) is continuously increasing. Older HNSCC patients may be more vulnerable to radiotherapy-related toxicities, so that extrapolation of available normal tissue complication probability (NTCP) models to this population may not be appropriate. Hence, we aimed to investigate the correlation between organ at risk (OAR) doses and chronic toxicities in older patients with HNSCC undergoing definitive radiotherapy. METHODS: Patients treated with definitive radiotherapy, either alone or with concomitant systemic treatment, between 2009 and 2019 in a large tertiary cancer center were eligible for this analysis. OARs were contoured based on international consensus guidelines, and EQD2 doses using α/ß values of 3 Gy for late effects were calculated based on the radiation treatment plans. Treatment-related toxicities were graded according to Common Terminology Criteria for Adverse Events version 5.0. Logistic regression analyses were carried out, and NTCP models were developed and internally validated using the bootstrapping method. RESULTS: A total of 180 patients with a median age of 73 years fulfilled the inclusion criteria and were analyzed. Seventy-three patients developed chronic moderate xerostomia (grade 2), 34 moderate dysgeusia (grade 2), and 59 moderate-to-severe (grade 2-3) dysphagia after definitive radiotherapy. The soft palate dose was significantly associated with all analyzed toxicities (xerostomia: OR = 1.028, dysgeusia: OR = 1.022, dysphagia: OR = 1.027) in the multivariable regression. The superior pharyngeal constrictor muscle was also significantly related to chronic dysphagia (OR = 1.030). Consecutively developed and internally validated NTCP models were predictive for the analyzed toxicities (optimism-corrected AUCs after bootstrapping: AUCxerostomia=0.64, AUCdysgeusia=0.60, AUCdysphagia=0.64). CONCLUSIONS: Our data suggest that the dose to the soft palate is associated with chronic moderate xerostomia, moderate dysgeusia and moderate-to-severe dysphagia in older HNSCC patients undergoing definitive radiotherapy. If validated in external studies, efforts should be undertaken to reduce the soft palate dose in these patients.


Asunto(s)
Neoplasias de Cabeza y Cuello , Órganos en Riesgo , Paladar Blando , Traumatismos por Radiación , Dosificación Radioterapéutica , Carcinoma de Células Escamosas de Cabeza y Cuello , Humanos , Anciano , Femenino , Masculino , Neoplasias de Cabeza y Cuello/radioterapia , Órganos en Riesgo/efectos de la radiación , Paladar Blando/efectos de la radiación , Traumatismos por Radiación/etiología , Anciano de 80 o más Años , Persona de Mediana Edad , Carcinoma de Células Escamosas de Cabeza y Cuello/radioterapia , Estudios Retrospectivos , Planificación de la Radioterapia Asistida por Computador/métodos
4.
Eur Radiol ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662100

RESUMEN

OBJECTIVES: In lung cancer, one of the main limitations for the optimal integration of the biological and anatomical information derived from Positron Emission Tomography (PET) and Computed Tomography (CT) is the time and expertise required for the evaluation of the different respiratory phases. In this study, we present two open-source models able to automatically segment lung tumors on PET and CT, with and without motion compensation. MATERIALS AND METHODS: This study involved time-bin gated (4D) and non-gated (3D) PET/CT images from two prospective lung cancer cohorts (Trials 108237 and 108472) and one retrospective. For model construction, the ground truth (GT) was defined by consensus of two experts, and the nnU-Net with 5-fold cross-validation was applied to 560 4D-images for PET and 100 3D-images for CT. The test sets included 270 4D- images and 19 3D-images for PET and 80 4D-images and 27 3D-images for CT, recruited at 10 different centres. RESULTS: In the performance evaluation with the multicentre test sets, the Dice Similarity Coefficients (DSC) obtained for our PET model were DSC(4D-PET) = 0.74 ± 0.06, improving 19% relative to the DSC between experts and DSC(3D-PET) = 0.82 ± 0.11. The performance for CT was DSC(4D-CT) = 0.61 ± 0.28 and DSC(3D-CT) = 0.63 ± 0.34, improving 4% and 15% relative to DSC between experts. CONCLUSIONS: Performance evaluation demonstrated that the automatic segmentation models have the potential to achieve accuracy comparable to manual segmentation and thus hold promise for clinical application. The resulting models can be freely downloaded and employed to support the integration of 3D- or 4D- PET/CT and to facilitate the evaluation of its impact on lung cancer clinical practice. CLINICAL RELEVANCE STATEMENT: We provide two open-source nnU-Net models for the automatic segmentation of lung tumors on PET/CT to facilitate the optimal integration of biological and anatomical information in clinical practice. The models have superior performance compared to the variability observed in manual segmentations by the different experts for images with and without motion compensation, allowing to take advantage in the clinical practice of the more accurate and robust 4D-quantification. KEY POINTS: Lung tumor segmentation on PET/CT imaging is limited by respiratory motion and manual delineation is time consuming and suffer from inter- and intra-variability. Our segmentation models had superior performance compared to the manual segmentations by different experts. Automating PET image segmentation allows for easier clinical implementation of biological information.

5.
Z Med Phys ; 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38182457

RESUMEN

PURPOSE: To perform experimental as well as independent Monte Carlo (MC) evaluation of the MC algorithm implemented in RADIANCE version 4.0.8, a dedicated treatment planning system (TPS) for 3D electron dose calculations in intraoperative radiation therapy (IOERT). METHODS AND MATERIALS: The MOBETRON 2000 (IntraOp Medical Corporation, Sunnyvale, CA) IOERT accelerator was employed. PDD and profiles for five cylindrical plastic applicators with 50-90 mm diameter and 0°, 30° beveling were measured in a water phantom, at nominal energies of 6, 9 and 12 MeV. Additional PDD measurements were performed for all the energies without applicator. MC modeling of the MOBETRON was performed with the user code BEAMnrc and egs_chamber of the MC simulation toolkit EGSnrc. The generated phase space files of the two 0°-bevel applicators (50 mm, 80 mm) and three energies in both RADIANCE and BEAMnrc, were used to determine PDD and profiles in various set-ups of virtual water phantoms with air and bone inhomogeneities. 3D dose distributions were also calculated in image data sets of an anthropomorphic tissue-equivalent pelvis phantom. Image acquisitions were realized with a CT scanner (Philips Big Bore CT, Netherlands). Gamma analysis was applied to quantify the deviations of the RADIANCE calculations to the measurements and EGSnrc calculations. Gamma criteria normalized to the global maximum were investigated between 2%, 2 mm and 3%, 3 mm. RESULTS: RADIANCE MC calculations satisfied the gamma criteria of 3%, 3 mm with a tolerance limit of 85% passing rate compared to in- water phantom measurements, except for the dose profiles of the 30° beveled applicators. Mismatches lay in surface doses, in umbra regions and in the beveled end of the 30° applicators. A very good agreement to the EGSnrc calculations in heterogeneous media was observed. Deviations were more pronounced for the larger applicator diameter and higher electron energy. In 3D dose comparisons in the anthropomorphic phantom, gamma passing rates were higher than 96 % for both simulated applicators. CONCLUSIONS: RADIANCE MC algorithm agrees within 3%, 3 mm criteria with in-water phantom measurements and EGSnrc MC dose distributions in heterogeneous media for 0°-bevel applicators. The user should be aware of missing scattering components and the 30° beveled applicators should be used with attention.

6.
Phys Med ; 114: 103153, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37778209

RESUMEN

PURPOSE: To develop a QA procedure, easy to use, reproducible and based on open-source code, to automatically evaluate the stability of different metrics extracted from CT images: Hounsfield Unit (HU) calibration, edge characterization metrics (contrast and drop range) and radiomic features. METHODS: The QA protocol was based on electron density phantom imaging. Home-made open-source Python code was developed for the automatic computation of the metrics and their reproducibility analysis. The impact on reproducibility was evaluated for different radiation therapy protocols, and phantom positions within the field of view and systems, in terms of variability (Shapiro-Wilk test for 15 repeated measurements carried out over three days) and comparability (Bland-Altman analysis and Wilcoxon Rank Sum Test or Kendall Rank Correlation Coefficient). RESULTS: Regarding intrinsic variability, most metrics followed a normal distribution (88% of HU, 63% of edge parameters and 82% of radiomic features). Regarding comparability, HU and contrast were comparable in all conditions, and drop range only in the same CT scanner and phantom position. The percentages of comparable radiomic features independent of protocol, position and system were 59%, 78% and 54%, respectively. The non-significantly differences in HU calibration curves obtained for two different institutions (7%) translated in comparable Gamma Index G (1 mm, 1%, >99%). CONCLUSIONS: An automated software to assess the reproducibility of different CT metrics was successfully created and validated. A QA routine proposal is suggested.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Tomografía Computarizada por Rayos X , Calibración , Reproducibilidad de los Resultados , Procesamiento de Imagen Asistido por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Fantasmas de Imagen , Programas Informáticos
7.
Sci Rep ; 13(1): 14806, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37684412

RESUMEN

Accurate small vessel stent visualization using CT remains challenging. Photon-counting CT (PCD-CT) may help to overcome this issue. We systematically investigate PCD-CT impact on small vessel stent assessment compared to energy-integrating-CT (EID). 12 water-contrast agent filled stents (3.0-8 mm) were scanned with patient-equivalent phantom using clinical PCD-CT and EID-CT. Images were reconstructed using dedicated vascular kernels. Subjective image quality was evaluated by 5 radiologists independently (5-point Likert-scale; 5 = excellent). Objective image quality was evaluated by calculating multi-row intensity profiles including edge rise slope (ERS) and coefficient-of-variation (CV). Highest overall reading scores were found for PCD-CT-Bv56 (3.6[3.3-4.3]). In pairwise comparison, differences were significant for PCD-CT-Bv56 vs. EID-CT-Bv40 (p ≤ 0.04), for sharpness and blooming respectively (all p < 0.05). Highest diagnostic confidence was found for PCD-CT-Bv56 (p ≤ 0.2). ANOVA revealed a significant effect of kernel strength on ERS (p < 0.001). CV decreased with stronger PCD-CT kernels, reaching its lowest in PCD-CT-Bv56 and highest in EID-CT reconstruction (p ≤ 0.05). We are the first study to verify, by phantom setup adapted to real patient settings, PCD-CT with a sharp vascular kernel provides the most favorable image quality for small vessel stent imaging. PCD-CT may reduce the number of invasive coronary angiograms, however, more studies needed to apply our results in clinical practice.


Asunto(s)
Prótesis Vascular , Enfermedad de la Arteria Coronaria , Tomografía Computarizada por Rayos X , Tomografía Computarizada por Rayos X/métodos , Diagnóstico por Imagen , Fantasmas de Imagen , Humanos , Enfermedad de la Arteria Coronaria/terapia
8.
Radiother Oncol ; 183: 109600, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36889597

RESUMEN

BACKGROUND AND PURPOSE: Radiation therapy for glioblastoma (GBM) typically involves large target volumes. The aim of this study was to examine the recurrence pattern of GBM following modern radiochemotherapy according to EORTC guidelines and provide dose and distance information for the choice of optimal target volume margins. MATERIALS AND METHODS: In this study, the recurrences of 97 GBM patients, treated with radiochemotherapy from 2013 to 2017 at the Medical Center- University of Freiburg, Germany were analysed. Dose and distance based metrices were used to derive recurrence patterns. RESULTS: The majority of recurrences (75%) occurred locally within the primary tumor area. Smaller GTVs had a higher rate of distant recurrences. Larger treated volumes did not show a clinical benefit regarding progression free and overall survival. CONCLUSION: The identified recurrence pattern suggests that adjustments or reductions in target volume margins are feasible and could result in similar survival rates, potentially combined with a lower risk of side effects.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/radioterapia , Recurrencia Local de Neoplasia/patología , Planificación de la Radioterapia Asistida por Computador , Quimioradioterapia , Riesgo , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/patología
9.
Z Med Phys ; 33(4): 463-478, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36038432

RESUMEN

PURPOSE: To employ the microDiamond and the microSilicon detector (mDD and mSD, both PTW-Freiburg, Germany) to determine the dose rate around a HDR 192Ir brachytherapy source (model mHDR-v2r, Elekta AB, Sweden). METHODS: The detectors were calibrated with a 60Co beam at the PTW Calibration Laboratory. Measurements around the 192Ir source were performed inside a PTW MP3 water phantom. The detectors were placed at selected points of measurement at radial distances r, ranging from 0.5 to 10 cm, keeping the polar angle θ = 90°. Additional measurements were performed with the mSD at fixed distances r = 1, 3 and 5 cm, with θ varying from 0 to 150°, 0 to 166°, and 0 to 168°, respectively. The corresponding mDD readings were already available from a previous work (Rossi et al., 2020). The beam quality correction factor of both detectors, as well as a phantom effect correction factor to account for the difference between the experimental geometry and that assumed in the TG-43 formalism, were determined using the Monte Carlo (MC) toolkit EGSnrc. The beam quality correction factor was factorized into energy dependence and volume-averaging correction factors. Using the abovementioned MC-based factors, the dose rate to water at the different points of measurement in TG-43 conditions was obtained from the measured readings, and was compared to the dose rate calculated according to the TG-43 formalism. RESULTS: The beam quality correction factor was considerably closer to unity for the mDD than for the mSD. The energy dependence of the mDD showed a very weak radial dependence, similar to the previous findings showing a weak angular dependence as well (Rossi et al., 2020). Conversely, the energy dependence of the mSD decreased significantly with increasing distances, and also showed a considerably more pronounced angular dependence, especially for the smallest angles. The volume-averaging showed a similar radial dependence for both detectors: the correction had a maximal impact at 0.5 cm and then approached unity for larger distances, as expected. Concerning the angular dependence, the correction for the mSD was also similar to the one previously determined for the mDD (Rossi et al., 2020): a maximal impact was observed at θ = 0°, with values tending to unity for larger angles. In general, the volume-averaging was less pronounced for the mSD due to the smaller sensitive volume radius. After the application of the MC-based factors, differences between mDD dose rate measurements and TG-43 dose rate calculations ranged from -2.6% to +4.3%, with an absolute average difference of 1.0%. For the mSD, the differences ranged from -3.1% to +5.2%, with an absolute average difference of 1.0%. For both detectors, all differences but one were within the combined uncertainty (k = 2). The differences of the mSD from the mDD ranged from -3.9% to +2.6%, with the vast majority of them being within the combined uncertainty (k = 2). For θ ≠ 0°, the mDD was able to provide sufficiently accurate results even without the application of the MC-based beam quality correction factor, with differences to the TG-43 dose rate calculations from -1.9% to +3.4%, always within the combined uncertainty (k = 2). CONCLUSION: The mDD and the mSD showed consistent results and appear to be well suitable for measuring the dose rate around HDR 192Ir brachytherapy sources. MC characterization of the detectors response is needed to determine the beam quality correction factor and to account for energy dependence and/or volume-averaging, especially for the mSD. Our findings support the employment of the mDD and mSD for source QA, TPS verification and TG-43 parameters determination.


Asunto(s)
Braquiterapia , Braquiterapia/métodos , Método de Montecarlo , Fantasmas de Imagen , Agua , Calibración , Radiometría
10.
Strahlenther Onkol ; 199(4): 379-388, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36074138

RESUMEN

BACKGROUND: Radiotherapy can induce cardiac injury in left-sided breast cancer cases. Cardiac-sparing irradiation using the deep inspiration breath-hold (DIBH) technique can achieve substantial dose reduction to vulnerable cardiac substructures compared with free breathing (FB). This study evaluated the dosimetric differences between both techniques at a single institution. METHODS: From 2017 to 2019, 130 patients with left-sided breast cancer underwent breast-conserving surgery (BCS; n = 121, 93.1%) or mastectomy (ME; n = 9, 6.9%) along with axillary lymph node staging (n = 105, 80.8%), followed by adjuvant irradiation in DIBH technique; adjuvant systemic therapy was included if applicable. 106 (81.5%) patients received conventional and 24 (18.5%) hypofractionated irradiation. Additionally, 12 patients received regional nodal irradiation. Computed tomography (CT) scans in FB and DIBH position were performed for all patients. Intrafractional 3D position monitoring of the patient surface in deep inspiration and breath gating was performed using Sentinel and Catalyst HD 3D surface scanning systems (C-RAD, Catalyst, C­RAD AB, Uppsala, Sweden). Individual coaching and determination of breathing amplitude during the radiation planning CT was performed. Three-dimensional treatment planning was performed using standard tangential treatment portals (6 or 18 MV). The delineation of cardiac structures and both lungs was done in both the FB and the DIBH scan. RESULTS: All dosimetric parameters for cardiac structures were significantly reduced (p < 0.01 for all). The mean heart dose (Dmean) in the DIBH group was 1.3 Gy (range 0.5-3.6) vs. 2.2 Gy (range 0.9-8.8) in the FB group (p < 0.001). The Dmean for the left ventricle (LV) in DIBH was 1.5 Gy (range 0.6-4.5), as compared to 2.8 Gy (1.1-9.5) with FB (p < 0.001). The parameters for LV (V10 Gy, V15 Gy, V20 Gy, V23 Gy, V25 Gy, V30 Gy) were reduced by about 100% (p < 0.001). The LAD Dmean in the DIBH group was 4.1 Gy (range 1.2-33.3) and 14.3 Gy (range 2.4-37.5) in the FB group (p < 0.001). The median values for LAD such as V15 Gy, V20 Gy, V25 Gy, V30 Gy, and V40 Gy decreased by roughly 100% (p < 0.001). An increasing volume of left lung in the DIBH position resulted in dose sparing of cardiac structures. CONCLUSION: For all ascertained dosimetric parameters, a significant dose reduction could be achieved in DIBH technique.


Asunto(s)
Neoplasias de la Mama , Neoplasias de Mama Unilaterales , Humanos , Femenino , Órganos en Riesgo/efectos de la radiación , Neoplasias de la Mama/radioterapia , Dosificación Radioterapéutica , Neoplasias de Mama Unilaterales/radioterapia , Neoplasias de Mama Unilaterales/cirugía , Estudios Retrospectivos , Planificación de la Radioterapia Asistida por Computador/métodos , Contencion de la Respiración , Mastectomía , Corazón/diagnóstico por imagen , Corazón/efectos de la radiación
11.
Z Med Phys ; 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36376203

RESUMEN

Deep learning advanced to one of the most important technologies in almost all medical fields. Especially in areas, related to medical imaging it plays a big role. However, in interventional radiotherapy (brachytherapy) deep learning is still in an early phase. In this review, first, we investigated and scrutinised the role of deep learning in all processes of interventional radiotherapy and directly related fields. Additionally, we summarised the most recent developments. For better understanding, we provide explanations of key terms and approaches to solving common deep learning problems. To reproduce results of deep learning algorithms both source code and training data must be available. Therefore, a second focus of this work is on the analysis of the availability of open source, open data and open models. In our analysis, we were able to show that deep learning plays already a major role in some areas of interventional radiotherapy, but is still hardly present in others. Nevertheless, its impact is increasing with the years, partly self-propelled but also influenced by closely related fields. Open source, data and models are growing in number but are still scarce and unevenly distributed among different research groups. The reluctance in publishing code, data and models limits reproducibility and restricts evaluation to mono-institutional datasets. The conclusion of our analysis is that deep learning can positively change the workflow of interventional radiotherapy but there is still room for improvements when it comes to reproducible results and standardised evaluation methods.

12.
EJNMMI Phys ; 9(1): 80, 2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36394640

RESUMEN

BACKGROUND: Patient's breathing affects the quality of chest images acquired with positron emission tomography/computed tomography (PET/CT) studies. Movement correction is required to optimize PET quantification in clinical settings. We present a reproducible methodology to compare the impact of different movement compensation protocols on PET image quality. Static phantom images were set as reference values, and recovery coefficients (RCs) were calculated from motion compensated images for the phantoms in respiratory movement. Image quality was evaluated in terms of: (1) volume accuracy (VA) with the NEMA phantom; (2) concentration accuracy (CA) by six refillable inserts within the electron density CIRS phantom; and (3) spatial resolution (R) with the Jaszczak phantom. Three different respiratory patterns were applied to the phantoms. We developed an open-source package to automatically analyze VA, CA and R. We compared 10 different movement compensation protocols available in the Philips Gemini TF-64 PET/CT (4-, 6-, 8- and 10-time bins, 20%-, 30%-, 40%-window width in Inhale and Exhale). RESULTS: The homemade package provided RC values for VA, CA and R of 102 PET images in less than 5 min. Results of the comparison of the 10 different protocols demonstrated the feasibility of the proposed method for quantifying the variations observed qualitatively. Overall, prospective protocols showed better motion compensation than retrospective. The best performance was obtained for the protocol Exhale 30% (0.3 s after maximum Exhale position and window width of 30%) with RC[Formula: see text], RC[Formula: see text] and RC[Formula: see text]. Among retrospective protocols, 8 Phase protocol showed the best performance. CONCLUSION: We provided an open-source package able to automatically evaluate the impact of motion compensation methods on PET image quality. A setup based on commonly available experimental phantoms is recommended. Its application for the comparison of 10 time-based approaches showed that Exhale 30% protocol had the best performance. The proposed framework is not specific to the phantoms and protocols presented on this study.

13.
Strahlenther Onkol ; 198(11): 1008-1015, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35833963

RESUMEN

PURPOSE: Radiotherapy (RT) constitutes a mainstay in the treatment of elderly patients with head and neck cancer (HNC), but use of simultaneous chemoradiotherapy (CRT) remains controversial. We have conducted a prospective analysis based on real-world patient data to examine the health-related quality of life (HRQoL) and cost effectiveness (CE) of CRT vs. RT in elderly HNC patients. METHODS: Eligible participants ≥ 65 years treated in a large tertiary cancer center between July 2019 and February 2020 who completed the validated EQ-5D-5L questionnaire (health state index [HI] and visual analog scale [VAS]) before and after RT were included. CE referred to direct medical costs, including diagnosis-related group (DRG)-based billings for inpatients and uniform assessment standard (EBM)-based costs for outpatients. The primary endpoint was cost (euros [€]) per quality-adjusted life year (QALY). The incremental cost-effectiveness ratios (ICERs) were calculated. Costs and QALYs were not discounted for short overall survival (OS). RESULTS: Baseline HRQoL was 0.878 (±0.11) in the CRT group and 0.857 (±0.17) in the RT group. Upon completion of therapy, HRQoL amounted to 0.849 (±0.14) in the CRT and 0.850 (±0.13) in the RT group. The mean treatment-related cost in the CRT cohort was €22,180.17 (±8325.26) vs. €18,027.87 (±26,022.48) in the RT group. The corresponding QALYs amounted to 2.62 in the CRT and 1.91 in the RT groups. The ICER was €5848.31. CONCLUSION: This is the first analysis from the German health care system demonstrating that the addition of chemotherapy to RT for selected elderly HNC patients is cost effective and not associated with a significant HRQoL decline.


Asunto(s)
Neoplasias de Cabeza y Cuello , Calidad de Vida , Humanos , Anciano , Análisis Costo-Beneficio , Neoplasias de Cabeza y Cuello/terapia , Quimioradioterapia , Años de Vida Ajustados por Calidad de Vida
14.
BMC Cancer ; 22(1): 682, 2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35729505

RESUMEN

BACKGROUND: Radiotherapy using the deep inspiration breath-hold (DIBH) technique compared with free breathing (FB) can achieve substantial reduction of heart and lung doses in left-sided breast cancer cases. The anatomical organ movement in deep inspiration also cause unintended exposure of locoregional lymph nodes to the irradiation field. METHODS: From 2017-2020, 148 patients with left-sided breast cancer underwent breast conserving surgery (BCS) or mastectomy (ME) with axillary lymph node staging, followed by adjuvant irradiation in DIBH technique. Neoadjuvant or adjuvant systemic therapy was administered depending on hormone receptor and HER2-status. CT scans in FB and DIBH position with individual coaching and determination of the breathing amplitude during the radiation planning CT were performed for all patients. Intrafractional 3D position monitoring of the patient surface in deep inspiration and gating was performed using Sentinel and Catalyst HD 3D surface scanning systems (C-RAD, Catalyst, C-RAD AB, Uppsala, Sweden). Three-dimensional treatment planning was performed using standard tangential treatment portals (6 or 18 MV). The delineation of ipsilateral locoregional lymph nodes was done on the FB and the DIBH CT-scan according to the RTOG recommendations. RESULTS: The mean doses (Dmean) in axillary lymph node (AL) level I, II and III in DIBH were 32.28 Gy (range 2.87-51.7), 20.1 Gy (range 0.44-53.84) and 3.84 Gy (range 0.25-39.23) vs. 34.93 Gy (range 10.52-50.40), 16.40 Gy (range 0.38-52.40) and 3.06 Gy (range 0.21-40.48) in FB (p < 0.0001). Accordingly, in DIBH the Dmean for AL level I were reduced by 7.59%, whereas for AL level II and III increased by 22.56% and 25.49%, respectively. The Dmean for the supraclavicular lymph nodes (SC) in DIBH was 0.82 Gy (range 0.23-4.11), as compared to 0.84 Gy (range 0.22-10.80) with FB (p = 0.002). This results in a mean dose reduction of 2.38% in DIBH. The Dmean for internal mammary lymph nodes (IM) was 12.77 Gy (range 1.45-39.09) in DIBH vs. 11.17 Gy (range 1.34-44.24) in FB (p = 0.005). This yields a mean dose increase of 14.32% in DIBH. CONCLUSIONS: The DIBH technique may result in changes in the incidental dose exposure of regional lymph node areas.


Asunto(s)
Neoplasias de la Mama , Traumatismos por Radiación , Neoplasias de Mama Unilaterales , Neoplasias de la Mama/radioterapia , Contencion de la Respiración , Femenino , Corazón , Humanos , Ganglios Linfáticos/diagnóstico por imagen , Ganglios Linfáticos/efectos de la radiación , Mastectomía , Órganos en Riesgo/efectos de la radiación , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Neoplasias de Mama Unilaterales/radioterapia , Neoplasias de Mama Unilaterales/cirugía
15.
Int J Radiat Oncol Biol Phys ; 113(5): 1025-1035, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35469897

RESUMEN

PURPOSE: The bicentric HypoFocal phase 2 trial investigates the implementation of molecular imaging with positron-emission tomography targeting prostate-specific membrane antigen (PSMA-PET) into modern focal dose-escalation radiation therapy (RT) concepts in 2 nonrandomized arms. We present the planned safety analysis after 6 months of follow-up. MATERIALS AND METHODS: Intermediate- and high-risk localized primary prostate cancer patients staged with multiparametric magnet resonance tomography and PSMA-PET were either treated with focal dose-escalated moderately hypofractionated RT (arm A) or single fraction high-dose-rate brachytherapy followed by external beam RT (arm B). PSMA-PET was used in addition to primary prostate cancer to define the intraprostatic gross tumor volume. Gastrointestinal and genitourinary toxicities were assessed according to Common Toxicity Criteria for Adverse Events (version 5.0) criteria. International Prostate Symptom Score was measured and quality of life assessed with European Organisation for Research and Treatment of Cancer questionnaires QLQ-PR25/-PR30. We enrolled 25 patients in each study arm. RESULTS: The implementation of PET-information led to large median volumes for dose escalation: 10.2 mL in arm A and 6.8 mL in Arm B. RT dose-escalation was feasible in all patients of arm A with up to 75 Gy (20 fractions) and in 23 patients with up to 19 Gy (1 fraction) in arm B. Toxicities, International Prostate Symptom Scores, and European Organisation for Research and Treatment of Cancer quality of life scores were not significantly different between baselines and 6 months follow-up in both arms. No grade 3 toxicities were observed at 6 months follow-up. CONCLUSIONS: This is the first prospective data supporting the feasibility of PSMA-PET-implementation into definitive focal dose-escalated RT. Patients maintained a good quality of life and a low toxicity profile after 6 months of follow-up.


Asunto(s)
Neoplasias de la Próstata , Calidad de Vida , Humanos , Imagen por Resonancia Magnética , Masculino , Tomografía de Emisión de Positrones , Estudios Prospectivos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/radioterapia
16.
Strahlenther Onkol ; 198(6): 537-546, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35357511

RESUMEN

PURPOSE: Hippocampus-avoidance whole brain radiotherapy with simultaneous integrated boost (HA-WBRT+SIB) is a complex treatment option for patients with multiple brain metastases, aiming to prevent neurocognitive decline and simultaneously increase tumor control. Achieving efficient hippocampal dose reduction in this context can be challenging. The aim of the current study is to present and analyze the efficacy of complete directional hippocampal blocking in reducing the hippocampal dose during HA-WBRT+SIB. METHODS: A total of 30 patients with multiple metastases having undergone HA-WBRT+SIB were identified. The prescribed dose was 30 Gy in 12 fractions to the whole brain, with 98% of the hippocampus receiving ≤ 9 Gy and 2% ≤ 17 Gy and with SIB to metastases/resection cavities of 36-51 Gy in 12 fractions. Alternative treatment plans were calculated using complete directional hippocampal blocking and compared to conventional plans regarding target coverage, homogeneity, conformity, dose to hippocampi and organs at risk. RESULTS: All alternative plans reached prescription doses. Hippocampal blocking enabled more successful sparing of the hippocampus, with a mean dose of 8.79 ± 0.99 Gy compared to 10.07 ± 0.96 Gy in 12 fractions with the conventional method (p < 0.0001). The mean dose to the whole brain (excluding metastases and hippocampal avoidance region) was 30.52 ± 0.80 Gy with conventional planning and 30.28 ± 0.11 Gy with hippocampal blocking (p = 0.11). Target coverage, conformity and homogeneity indices for whole brain and metastases, as well as doses to organs at risk were similar between planning methods (p > 0.003). CONCLUSION: Complete directional hippocampal blocking is an efficient method for achieving improved hippocampal sparing during HA-WBRT+SIB.


Asunto(s)
Neoplasias Encefálicas , Radioterapia de Intensidad Modulada , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundario , Irradiación Craneana/métodos , Hipocampo , Humanos , Tratamientos Conservadores del Órgano/métodos , Órganos en Riesgo , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos
17.
Clin Transl Radiat Oncol ; 33: 120-127, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35243023

RESUMEN

BACKGROUND: Tumor hypoxia worsens the prognosis of head-and-neck squamous cell carcinoma (HNSCC) patients, and plasma hypoxia markers may be used as biomarkers for radiotherapy personalization. We therefore investigated the role of the hypoxia-associated plasma proteins osteopontin, galectin-3, vascular endothelial growth factor (VEGF) and connective tissue growth factor (CTGF) as surrogate markers for imaging-based tumor hypoxia. METHODS: Serial blood samples of HNSCC patients receiving chemoradiation within a prospective trial were analyzed for osteopontin, galectin-3, VEGF and CTGF concentrations. Tumor hypoxia was quantified in treatment weeks 0, 2 and 5 using [18F]FMISO PET/CT. The association between PET-defined hypoxia and the plasma markers was determined using Pearson's correlation analyses. Receiver-operating characteristic analyses were conducted to reveal the diagnostic value of the hypoxia markers. RESULTS: Baseline osteopontin (r = 0.579, p < 0.01) and galectin-3 (r = 0.429, p < 0.05) correlated with the hypoxic subvolume (HSV) prior to radiotherapy, whereas VEGF (r = 0.196, p = 0.36) and CTGF (r = 0.314, p = 0.12) showed no association. Patients with an HSV > 1 mL in week 2 exhibited increased VEGF (p < 0.05) and CTGF (p < 0.05) levels in week 5. Pretherapeutic osteopontin levels were higher in patients exhibiting residual hypoxia at the end of treatment (104.7 vs. 60.8 ng/mL, p < 0.05) and could therefore predict residual hypoxia (AUC = 0.821, 95% CI 0.604-1.000, p < 0.05). CONCLUSION: In this exploratory analysis, osteopontin correlated with the initial HSV and with residual tumor hypoxia; therefore, there may be a rationale to study hypoxic modification based on osteopontin levels. However, as plasma hypoxia markers do not correspond to any spatial information of tumor hypoxia, they have limitations regarding the replacement of [18F]FMISO PET-based focal treatments. The results need to be validated in larger patient cohorts to draw definitive conclusions.

18.
Eur J Nucl Med Mol Imaging ; 49(5): 1650-1660, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34773163

RESUMEN

PURPOSE: Intratumoral hypoxia increases resistance of head-and-neck squamous cell carcinoma (HNSCC) to radiotherapy. [18F]FMISO PET imaging enables noninvasive hypoxia monitoring, though requiring complex logistical efforts. We investigated the role of plasma interleukin-6 (IL-6) as potential surrogate parameter for intratumoral hypoxia in HNSCC using [18F]FMISO PET/CT as reference. METHODS: Within a prospective trial, serial blood samples of 27 HNSCC patients undergoing definitive chemoradiation were collected to analyze plasma IL-6 levels. Intratumoral hypoxia was assessed in treatment weeks 0, 2, and 5 using [18F]FMISO PET/CT imaging. The association between PET-based hypoxia and IL-6 was examined using Pearson's correlation and multiple regression analyses, and the diagnostic power of IL-6 for tumor hypoxia response prediction was determined with receiver-operating characteristic analyses. RESULTS: Mean IL-6 concentrations were 15.1, 19.6, and 31.0 pg/mL at baseline, week 2 and week 5, respectively. Smoking (p=0.050) and reduced performance status (p=0.011) resulted in higher IL-6 levels, whereas tumor (p=0.427) and nodal stages (p=0.334), tumor localization (p=0.439), and HPV status (p=0.294) had no influence. IL-6 levels strongly correlated with the intratumoral hypoxic subvolume during treatment (baseline: r=0.775, p<0.001; week 2: r=0.553, p=0.007; week 5: r=0.734, p<0.001). IL-6 levels in week 2 were higher in patients with absent early tumor hypoxia response (p=0.016) and predicted early hypoxia response (AUC=0.822, p=0.031). Increased IL-6 levels at week 5 resulted in a trend towards reduced progression-free survival (p=0.078) and overall survival (p=0.013). CONCLUSION: Plasma IL-6 is a promising surrogate marker for tumor hypoxia dynamics in HNSCC patients and may facilitate hypoxia-directed personalized radiotherapy concepts. TRIAL REGISTRATION: The prospective trial was registered in the German Clinical Trial Register (DRKS00003830). Registered 20 August 2015.


Asunto(s)
Neoplasias de Cabeza y Cuello , Interleucina-6 , Biomarcadores , Hipoxia de la Célula , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Neoplasias de Cabeza y Cuello/terapia , Humanos , Hipoxia/diagnóstico por imagen , Misonidazol , Proyectos Piloto , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Tomografía de Emisión de Positrones , Estudios Prospectivos , Radiofármacos , Carcinoma de Células Escamosas de Cabeza y Cuello/diagnóstico por imagen , Carcinoma de Células Escamosas de Cabeza y Cuello/terapia
19.
Front Oncol ; 11: 770959, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34926278

RESUMEN

INTRODUCTION: To evaluate the oncological outcome of high dose rate (HDR) brachytherapy (BRT) as monotherapy for clinically localised prostate cancer (PCA). MATERIAL AND METHODS: Between January 2002 and February 2004, 141 consecutive patients with clinically localised PCA were treated with HDR-BRT monotherapy. The cohort comprised 103 (73%) low-, 32 (22.7%) intermediate- and 6 (4.3%) high risk patients according to D'Amico classification or 104 (73.8%) low-, 24 (17.0%) intermediate favourable-, 12 (8.5%) intermediate unfavourable- and one (0.7%) very high risk patient according to National Comprehensive Cancer Network (NCCN) one. Patients received four fractions of 9.5 Gy delivered within a single implant up to a total physical dose of 38 Gy. Catheter-implantation was transrectal ultrasound-based whereas treatment planning CT-based. Thirty-three patients (23.4%) received ADT neoadjuvantly and continued concurrently with BRT. Biochemical relapse-free survival (BRFS) was defined according to the Phoenix Consensus Criteria and genitourinary (GU)/gastrointestinal (GI) toxicity evaluated using the Common Toxicity Criteria for Adverse Events version 5.0. RESULTS: Median age at treatment and median follow-up time was 67.2 and 15.2 years, respectively. Twenty-three (16.3%) patients experienced a biochemical relapse and 5 (3.5%) developed distant metastases, with only one patient dying of PCA. The BRFS was 85.1% at 15 years and 78.7% at 18 years. The corresponding overall survival, metastases-free survival, and prostate cancer specific mortality at 15- and 18-years was 73.9%/59.1%, 98.3%/90.6%, and 100%/98.5% respectively. Late grade 3 GI and GU toxicity was 4.2% and 5.6% respectively. Erectile dysfunction grade 3 was reported by 27 (19%) patients. From the prognostic factors evaluated, tumor stage (≤T2b compared to ≥T2c) along with the risk group (low-intermediate vs. high) when using the D'Amico classification but not when the NCCN one was taken into account, correlated significantly with BRFS. CONCLUSION: Our long-term results confirm HDR-BRT to be a safe and effective monotherapeutic treatment modality for low- and intermediate risk PCA.

20.
Cancers (Basel) ; 13(22)2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34830950

RESUMEN

Technical advances in radiotherapy (RT) treatment planning and delivery have substantially changed RT concepts for primary prostate cancer (PCa) by (i) enabling a reduction of treatment time, and by (ii) enabling safe delivery of high RT doses. Several studies proposed a dose-response relationship for patients with primary PCa and especially in patients with high-risk features, as dose escalation leads to improved tumor control. In parallel to the improvements in RT techniques, diagnostic imaging techniques like multiparametric magnetic resonance imaging (mpMRI) and positron-emission tomography targeting prostate-specific-membrane antigen (PSMA-PET) evolved and enable an accurate depiction of the intraprostatic tumor mass for the first time. The HypoFocal-SBRT study combines ultra-hypofractionated RT/stereotactic body RT, with focal RT dose escalation on intraprostatic tumor sides by applying state of the art diagnostic imaging and most modern RT concepts. This novel strategy will be compared with moderate hypofractionated RT (MHRT), one option for the curative primary treatment of PCa, which has been proven by several prospective trials and is recommended and carried out worldwide. We suspect an increase in relapse-free survival (RFS), and we will assess quality of life in order to detect potential changes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...