Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mar Pollut Bull ; 200: 116157, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38364643

RESUMEN

The Blue Growth strategy promises a sustainable use of marine resources for the benefit of the society. However, oil pollution in the marine environment is still a serious issue for human, animal, and environmental health; in addition, it deprives citizens of the potential economic and recreational advantages in the affected areas. Bioremediation, that is the use of bio-resources for the degradation of pollutants, is one of the focal themes on which the Blue Growth aims to. A repertoire of marine-derived bio-products, biomaterials, processes, and services useful for efficient, economic, low impact, treatments for the recovery of oil-polluted areas has been demonstrated in many years of research around the world. Nonetheless, although bioremediation technology is routinely applied in soil, this is not still standardized in the marine environment and the potential market is almost underexploited. This review provides a summary of opportunities for the exploiting and addition of value to research products already validated. Moreover, the review discusses challenges that limit bioremediation in marine environment and actions that can facilitate the conveying of valuable products/processes towards the market.


Asunto(s)
Contaminantes Ambientales , Contaminación por Petróleo , Petróleo , Contaminantes Químicos del Agua , Animales , Humanos , Biodegradación Ambiental , Petróleo/metabolismo , Contaminantes Químicos del Agua/análisis
2.
Life (Basel) ; 13(11)2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-38004303

RESUMEN

Dinoflagellates make up the second largest marine group of marine unicellular eukaryotes in the world ocean and comprise both heterotrophic and autotrophic species, encompassing a wide genetic and chemical diversity. They produce a plethora of secondary metabolites that can be toxic to other species and are mainly used against predators and competing species. Dinoflagellates are indeed often responsible for harmful algal bloom, where their toxic secondary metabolites can accumulate along the food chain, leading to significant damages to the ecosystem and human health. Secondary metabolites from dinoflagellates have been widely investigated for potential biomedical applications and have revealed multiple antimicrobial, antifungal, and anticancer properties. Species from the genus Amphidinium seem to be particularly interesting for the production of medically relevant compounds. The present review aims at summarising current knowledge on the diversity and the pharmaceutical properties of secondary metabolites from the genus Amphidinium. Specifically, Amphidinium spp. produce a range of polyketides possessing cytotoxic activities such as amphidinolides, caribenolides, amphidinins, and amphidinols. Potent antimicrobial properties against antibiotic-resistant bacterial strains have been observed for several amphidinins. Amphidinols revealed instead strong activities against infectious fungi such as Candida albicans and Aspergillus fumigatus. Finally, compounds such as amphidinolides, isocaribenolide-I, and chlorohydrin 2 revealed potent cytotoxic activities against different cancer cell lines. Overall, the wide variety of antimicrobial, antifungal, and anticancer properties of secondary metabolites from Amphidinium spp. make this genus a highly suitable candidate for future medical applications, spanning from cancer drugs to antimicrobial products that are alternatives to currently available antibiotic and antimycotic products.

3.
Microorganisms ; 10(12)2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36557698

RESUMEN

Heavy metals (HMs) can induce both chronic and acute harmful effects on marine and freshwater biota. The environmental impact of HMs in freshwater, seawater, soil, and wastewater can be limited using microbes, including microalgae, that are able to remove metals from environmental matrices. Indeed, they can passively adsorb and actively accumulate these persistent pollutants within their organelles, limiting their detrimental effects on cellular metabolism. The Sarno River is a 30 km long freshwater stream located in Southern Italy, polluted by partially untreated municipal, agricultural, and industrial wastewaters. In spite of this, microalgal cultures from Sarno River or Sarno River Mouth have never been established. In the present study, we isolated a green algal strain from the Sarno River Mouth and determined its ability to grow in polluted seawater containing different concentrations of cadmium, lead, or zinc. This strain was found to be able to accumulate these elements within its biomass in a dose-dependent manner. Growth inhibition experiments confirm the relatively low toxicity of Cd and Pb below 50 µM, while algal growth was seriously affected in Zn-amended media. To the best of our knowledge, this is the first study focused on the ability of microalgae from Sarno River Mouth to tolerate and uptake HMs.

4.
Toxics ; 10(9)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36136491

RESUMEN

Microalgae are increasingly recognised as suitable microorganisms for heavy metal (HM) removal, since they are able to adsorb them onto their cell wall and, in some cases, compartmentalise them inside organelles. However, at relatively high HM concentrations, they could also show signs of stress, such as organelle impairments and increased activities of antioxidant enzymes. The main aim of this review is to report on the mechanisms adopted by microalgae to counteract detrimental effects of high copper (Cu) concentrations, and on the microalgal potential for Cu bioremediation of aquatic environments. Studying the delicate balance between beneficial and detrimental effects of Cu on microalgae is of particular relevance as this metal is widely present in aquatic environments facing industrial discharges. This metal often induces chloroplast functioning impairment, generation of reactive oxygen species (ROS) and growth rate reduction in a dose-dependent manner. However, microalgae also possess proteins and small molecules with protective role against Cu and, in general, metal stress, which increase their resistance towards these pollutants. Our critical literature analysis reveals that microalgae can be suitable indicators of Cu pollution in aquatic environments, and could also be considered as components of eco-sustainable devices for HM bioremediation in association with other organisms.

5.
Biol Lett ; 18(4): 20220039, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35414221

RESUMEN

Intracellular ligands that bind heavy metals (HMs) and thereby minimize their detrimental effects to cellular metabolism are attracting great interest for a number of applications including bioremediation and development of HM-biosensors. Metallothioneins (MTs) are short, cysteine-rich, genetically encoded proteins involved in intracellular metal-binding and play a key role in detoxification of HMs. We searched approximately 700 genomes and transcriptomes of non-ciliate protists for novel putative MTs by similarity and structural analyses and found 21 unique proteins playing a potential role as MTs. Most putative MTs derive from heterokonts and dinoflagellates and share common features such as (i) a putative metal-binding domain in proximity of the N-terminus, (ii) two putative MT-specific domains near the C-terminus and (iii) one to three CTCGXXCXCGXXCXCXXC patterns. Although the biological function of these proteins has not been experimentally proven, knowledge of their genetic sequences adds useful information on proteins that are potentially involved in HM-binding and can contribute to the design of future biomolecular assays on HM-microbe interactions and MT-based biosensors.


Asunto(s)
Biología Computacional , Metales Pesados , Metalotioneína/química , Metalotioneína/genética , Metalotioneína/metabolismo , Metales Pesados/metabolismo
6.
Molecules ; 26(24)2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34946780

RESUMEN

Microalgae have a great potential for the production of healthy food and feed supplements. Their ability to convert carbon into high-value compounds and to be cultured in large scale without interfering with crop cultivation makes these photosynthetic microorganisms promising for the sustainable production of lipids. In particular, microalgae represent an alternative source of polyunsaturated fatty acids (PUFAs), whose consumption is related to various health benefits for humans and animals. In recent years, several strategies to improve PUFAs' production in microalgae have been investigated. Such strategies include selecting the best performing species and strains and the optimization of culturing conditions, with special emphasis on the different cultivation systems and the effect of different abiotic factors on PUFAs' accumulation in microalgae. Moreover, developments and results obtained through the most modern genetic and metabolic engineering techniques are described, focusing on the strategies that lead to an increased lipid production or an altered PUFAs' profile. Additionally, we provide an overview of biotechnological applications of PUFAs derived from microalgae as safe and sustainable organisms, such as aquafeed and food ingredients, and of the main techniques (and their related issues) for PUFAs' extraction and purification from microalgal biomass.


Asunto(s)
Acuicultura , Biomasa , Ácidos Grasos Insaturados , Ingeniería Metabólica , Microalgas , Ácidos Grasos Insaturados/biosíntesis , Ácidos Grasos Insaturados/genética , Microalgas/genética , Microalgas/crecimiento & desarrollo
7.
Front Microbiol ; 12: 718933, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34659147

RESUMEN

The exploitation of petrochemical hydrocarbons is compromising ecosystem and human health and biotechnological research is increasingly focusing on sustainable materials from plants and, to a lesser extent, microalgae. Fatty acid derivatives include, among others, oxylipins, hydroxy fatty acids, diols, alkenones, and wax esters. They can occur as storage lipids or cell wall components and possess, in some cases, striking cosmeceutical, pharmaceutical, and nutraceutical properties. In addition, long chain (>20) fatty acid derivatives mostly contain highly reduced methylenic carbons and exhibit a combustion enthalpy higher than that of C14 - 20 fatty acids, being potentially suitable as biofuel candidates. Finally, being the building blocks of cell wall components, some fatty acid derivatives might also be used as starters for the industrial synthesis of different polymers. Within this context, microalgae can be a promising source of fatty acid derivatives and, in contrast with terrestrial plants, do not require arable land neither clean water for their growth. Microalgal mass culturing for the extraction and the exploitation of fatty acid derivatives, along with products that are relevant in nutraceutics (e.g., polyunsaturated fatty acids), might contribute in increasing the viability of microalgal biotechnologies. This review explores fatty acids derivatives from microalgae with applications in the field of renewable energies, biomaterials and pharmaceuticals. Nannochloropsis spp. (Eustigmatophyceae, Heterokontophyta) are particularly interesting for biotechnological applications since they grow at faster rates than many other species and possess hydroxy fatty acids and aliphatic cell wall polymers.

8.
Front Microbiol ; 12: 584850, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33732217

RESUMEN

Coastal areas impacted by high anthropogenic pressures typically display sediment contamination by polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs). Microbial-based bioremediation represents a promising strategy for sediment reclamation, yet it frequently fails due to poor knowledge of the diversity and dynamics of the autochthonous microbial assemblages and to the inhibition of the target microbes in the contaminated matrix. In the present study, we used an integrated approach including a detailed environmental characterization, high-throughput sequencing and culturing to identify autochthonous bacteria with bioremediation potential in the sediments of Bagnoli-Coroglio (Gulf of Naples, Mediterranean Sea), a coastal area highly contaminated by PAHs, aliphatic hydrocarbons and HMs. The analysis of the benthic prokaryotic diversity showed that the distribution of the dominant taxon (Gammaproteobacteria) was mainly influenced by PAHs, As, and Cd concentrations. The other abundant taxa (including Alphaproteobacteria, Deltaproteobacteria, Bacteroidetes, Acidobacteria, Actinobacteria, NB1-j, Desulfobacterota, and Myxococcota) were mainly driven by sediment grain size and by Cu and Cr concentrations, while the rare taxa (i.e., each contributing <1%) by As and aliphatic hydrocarbons concentrations and by sediment redox potential. These results suggest a differential response of bacterial taxa to environmental features and chemical contamination and those different bacterial groups may be inhibited or promoted by different contaminants. This hypothesis was confirmed by culturing and isolating 80 bacterial strains using media highly enriched in PAHs, only nine of which were contextually resistant to high HM concentrations. Such resistant isolates represented novel Gammaproteobacteria strains affiliated to Vibrio, Pseudoalteromonas, and Agarivorans, which were only scarcely represented in their original assemblages. These findings suggest that rare but culturable bacterial strains resistant/tolerant to high levels of mixed contaminants can be promising candidates useful for the reclamation by bioaugmentation strategies of marine sediments that are highly contaminated with PAHs and HMs.

9.
Front Genet ; 11: 489357, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33329686

RESUMEN

Marker gene sequencing of the rRNA operon (16S, 18S, ITS) or cytochrome c oxidase I (CO1) is a popular means to assess microbial communities of the environment, microbiomes associated with plants and animals, as well as communities of multicellular organisms via environmental DNA sequencing. Since this technique is based on sequencing a single gene, or even only parts of a single gene rather than the entire genome, the number of reads needed per sample to assess the microbial community structure is lower than that required for metagenome sequencing. This makes marker gene sequencing affordable to nearly any laboratory. Despite the relative ease and cost-efficiency of data generation, analyzing the resulting sequence data requires computational skills that may go beyond the standard repertoire of a current molecular biologist/ecologist. We have developed Cascabel, a scalable, flexible, and easy-to-use amplicon sequence data analysis pipeline, which uses Snakemake and a combination of existing and newly developed solutions for its computational steps. Cascabel takes the raw data as input and delivers a table of operational taxonomic units (OTUs) or Amplicon Sequence Variants (ASVs) in BIOM and text format and representative sequences. Cascabel is a highly versatile software that allows users to customize several steps of the pipeline, such as selecting from a set of OTU clustering methods or performing ASV analysis. In addition, we designed Cascabel to run in any linux/unix computing environment from desktop computers to computing servers making use of parallel processing if possible. The analyses and results are fully reproducible and documented in an HTML and optional pdf report. Cascabel is freely available at Github: https://github.com/AlejandroAb/CASCABEL.

10.
Front Microbiol ; 11: 517, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32431671

RESUMEN

The persistence of heavy metals (HMs) in the environment causes adverse effects to all living organisms; HMs accumulate along the food chain affecting different levels of biological organizations, from cells to tissues. HMs enter cells through transporter proteins and can bind to enzymes and nucleic acids interfering with their functioning. Strategies used by microalgae to minimize HM toxicity include the biosynthesis of metal-binding peptides that chelate metal cations inhibiting their activity. Metal-binding peptides include genetically encoded metallothioneins (MTs) and enzymatically produced phytochelatins (PCs). A number of techniques, including genetic engineering, focus on increasing the biosynthesis of MTs and PCs in microalgae. The present review reports the current knowledge on microalgal MTs and PCs and describes the state of art of their use for HM bioremediation and other putative biotechnological applications, also emphasizing on techniques aimed at increasing the cellular concentrations of MTs and PCs. In spite of the broad metabolic and chemical diversity of microalgae that are currently receiving increasing attention by biotechnological research, knowledge on MTs and PCs from these organisms is still limited to date.

11.
J Phycol ; 56(1): 37-51, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31608987

RESUMEN

Members of the class Mamiellophyceae comprise species that can dominate picophytoplankton diversity in polar waters. Yet, polar species are often morphologically indistinguishable from temperate species, although clearly separated by molecular features. Here we examine four Mamiellophyceae strains from the Canadian Arctic. The 18S rRNA and Internal Transcribed Spacer 2 (ITS2) gene phylogeny place these strains within the family Mamiellaceae (Mamiellales, Mamiellophyceae) in two separate clades of the genus Mantoniella. ITS2 synapomorphies support their placement as two new species, Mantoniella beaufortii and Mantoniella baffinensis. Both species have round green cells with diameter between 3 and 5 µm, one long flagellum and a short flagellum (~1 µm) and are covered by spiderweb-like scales, making both species similar to other Mantoniella species. Morphologically, M. beaufortii and M. baffinensis are most similar to the cosmopolitan M. squamata with only minor differences in scale structure distinguishing them. Screening of global marine metabarcoding data sets indicates M. beaufortii has only been recorded in seawater and sea ice samples from the Arctic, while no environmental barcode matches M. baffinensis. Like other Mamiellophyceae genera that have distinct polar and temperate species, the polar distribution of these new species suggests they are cold or ice-adapted Mantoniella species.


Asunto(s)
Chlorophyta , Regiones Árticas , Canadá , Filogenia , Agua de Mar
12.
Antioxidants (Basel) ; 8(6)2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-31159429

RESUMEN

Little is known on the antioxidant activity modulation in microalgae, even less in diatoms. Antioxidant molecule concentrations and their modulation in microalgae has received little attention and the interconnection between light, photosynthesis, photoprotection, and antioxidant network in microalgae is still unclear. To fill this gap, we selected light as external forcing to drive physiological regulation and acclimation in the costal diatom Skeletonema marinoi. We investigated the role of light regime on the concentration of ascorbic acid, phenolic compounds and among them flavonoids and their connection with photoprotective mechanisms. We compared three high light conditions, differing in either light intensity or wave distribution, with two low light conditions, differing in photoperiod, and a prolonged darkness. The change in light distribution, from sinusoidal to square wave distribution was also investigated. Results revealed a strong link between photoprotection, mainly relied on xanthophyll cycle operation, and the antioxidant molecules and activity modulation. This study paves the way for further investigation on the antioxidant capacity of diatoms, which resulted to be strongly forced by light conditions, also in the view of their potential utilization in nutraceuticals or new functional cosmetic products.

13.
Plant Cell Physiol ; 60(8): 1666-1682, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31058972

RESUMEN

We investigated potential biosynthetic pathways of long chain alkenols (LCAs), long chain alkyl diols (LCDs), and long chain hydroxy fatty acids (LCHFAs) in Nannochloropsis oceanica and Nannochloropsis gaditana, by combining culturing experiments with genomic and transcriptomic analyses. Incubation of Nannochloropsis spp. in the dark for 1 week led to significant increases in the cellular concentrations of LCAs and LCDs in both species. Consistently, 13C-labelled substrate experiments confirmed that both LCA and LCD were actively produced in the dark from C14-18 fatty acids by either condensation or elongation/hydroxylation, although no enzymatic evidence was found for the former pathway. Nannochloropsis spp. did, however, contain (i) multiple polyketide synthases (PKSs) including one type (PKS-Clade II) that might catalyze incomplete fatty acid elongations leading to the formation of 3-OH-fatty acids, (ii) 3-hydroxyacyl dehydratases (HADs), which can possibly form Δ2/Δ3 monounsaturated fatty acids, and (iii) fatty acid elongases (FAEs) that could elongate 3-OH-fatty acids and Δ2/Δ3 monounsaturated fatty acids to longer products. The enzymes responsible for reduction of the long chain fatty acids to LCDs and LCAs are, however, unclear. A putative wax ester synthase/acyl coenzyme A (acyl-CoA): diacylglycerol acyltransferase is likely to be involved in the esterification of LCAs and LCDs in the cell wall. Our data thus provide useful insights in predicting the biosynthetic pathways of LCAs and LCDs in phytoplankton suggesting a key role of FAE and PKS enzymes.


Asunto(s)
Alcoholes/metabolismo , Alquenos/metabolismo , Sintasas Poliquetidas/metabolismo , Acetiltransferasas/metabolismo , Alcoholes/química , Alquenos/química , Enoil-CoA Hidratasa/metabolismo , Elongasas de Ácidos Grasos , Ácidos Grasos Monoinsaturados/metabolismo , Microalgas/enzimología , Microalgas/metabolismo , Especificidad por Sustrato
14.
Curr Biol ; 29(6): 968-978.e4, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30827917

RESUMEN

Photosymbiosis between single-celled hosts and microalgae is common in oceanic plankton, especially in oligotrophic surface waters. However, the functioning of this ecologically important cell-cell interaction and the subcellular mechanisms allowing the host to accommodate and benefit from its microalgae remain enigmatic. Here, using a combination of quantitative single-cell structural and chemical imaging techniques (FIB-SEM, nanoSIMS, Synchrotron X-ray fluorescence), we show that the structural organization, physiology, and trophic status of the algal symbionts (the haptophyte Phaeocystis) significantly change within their acantharian hosts compared to their free-living phase in culture. In symbiosis, algal cell division is blocked, photosynthesis is enhanced, and cell volume is increased by up to 10-fold with a higher number of plastids (from 2 to up to 30) and thylakoid membranes. The multiplication of plastids can lead to a 38-fold increase of the total plastid volume in a cell. Subcellular mapping of nutrients (nitrogen and phosphorous) and their stoichiometric ratios shows that symbiotic algae are impoverished in phosphorous and suggests a higher investment in energy-acquisition machinery rather than in growth. Nanoscale imaging also showed that the host supplies a substantial amount of trace metals (e.g., iron and cobalt), which are stored in algal vacuoles at high concentrations (up to 660 ppm). Sulfur mapping reveals a high concentration in algal vacuoles that may be a source of antioxidant molecules. Overall, this study unveils an unprecedented morphological and metabolic transformation of microalgae following their integration into a host, and it suggests that this widespread symbiosis is a farming strategy wherein the host engulfs and exploits microalgae.


Asunto(s)
Haptophyta/fisiología , Rhizaria/fisiología , Simbiosis/fisiología , División Celular , Tamaño de la Célula , Haptophyta/citología , Haptophyta/metabolismo , Fotosíntesis
15.
J Phycol ; 53(1): 161-187, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27809344

RESUMEN

Seventy-five diatom strains isolated from the Beaufort Sea (Canadian Arctic) in the summer of 2009 were characterized by light and electron microscopy (SEM and TEM), as well as 18S and 28S rRNA gene sequencing. These strains group into 20 genotypes and 17 morphotypes and are affiliated with the genera Arcocellulus, Attheya, Chaetoceros, Cylindrotheca, Eucampia, Nitzschia, Porosira, Pseudo-nitzschia, Shionodiscus, Thalassiosira, and Synedropsis. Most of the species have a distribution confined to the northern/polar area. Chaetoceros neogracilis and Chaetoceros gelidus were the most represented taxa. Strains of C. neogracilis were morphologically similar and shared identical 18S rRNA gene sequences, but belonged to four distinct genetic clades based on 28S rRNA, ITS-1 and ITS-2 phylogenies. Secondary structure prediction revealed that these four clades differ in hemi-compensatory base changes (HCBCs) in paired positions of the ITS-2, suggesting their inability to interbreed. Reproductively isolated C. neogracilis genotypes can thus co-occur in summer phytoplankton communities in the Beaufort Sea. C. neogracilis generally occurred as single cells but also formed short colonies. It is phylogenetically distinct from an Antarctic species, erroneously identified in some previous studies as C. neogracilis, but named here as Chaetoceros sp. This work provides taxonomically validated sequences for 20 Arctic diatom taxa, which will facilitate future metabarcoding studies on phytoplankton in this region.


Asunto(s)
Diatomeas/clasificación , Variación Genética , Fitoplancton/clasificación , Regiones Árticas , Canadá , Diatomeas/citología , Diatomeas/genética , Diatomeas/ultraestructura , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Océanos y Mares , Filogenia , Fitoplancton/citología , Fitoplancton/genética , Fitoplancton/ultraestructura , Análisis de Secuencia de ADN
16.
J Phycol ; 52(2): 184-99, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27037584

RESUMEN

A new nontoxic Pseudo-nitzschia species belonging to the P. pseudodelicatissima complex, P. arctica, was isolated from different areas of the Arctic. The erection of P. arctica is mainly supported by molecular data, since the species shares identical ultrastructure with another species in the complex, P. fryxelliana, and represents a new case of crypticity within the genus. Despite their morphological similarity, the two species are not closely related in phylogenies based on LSU, ITS and rbcL. Interestingly, P. arctica is phylogenetically most closely related to P. granii and P. subcurvata, from which the species is, however, morphologically different. P. granii and P. subcurvata lack the central larger interspace which is one of the defining features of the P. pseudodelicatissima complex. The close genetic relationship between P. arctica and the two species P. granii and P. subcurvata is demonstrated by analysis of the secondary structure of ITS2 which revealed no compensatory base changes, two hemi-compensatory base changes, and two deletions in P. arctica with respect to the other two species. These findings emphasize that rates of morphological differentiation, molecular evolution and speciation are often incongruent for Pseudo-nitzschia species, resulting in a restricted phylogenetic value for taxonomic characters used to discriminate species. The description of a new cryptic species, widely distributed in the Arctic and potentially representing an endemic component of the Arctic diatom flora, reinforces the idea of the existence of noncosmopolitan Pseudo-nitzschia species and highlights the need for combined morphological and molecular analyses to assess the distributional patterns of phytoplankton species.


Asunto(s)
Frío , Diatomeas/clasificación , Agua , Secuencia de Bases , Diatomeas/citología , Diatomeas/ultraestructura , Funciones de Verosimilitud , Conformación de Ácido Nucleico , Filogenia , Especificidad de la Especie , Pruebas de Toxicidad
17.
Front Microbiol ; 6: 98, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25852650

RESUMEN

Rhizaria are an important component of oceanic plankton communities worldwide. A number of species harbor eukaryotic microalgal symbionts, which are horizontally acquired in the environment at each generation. Although these photosymbioses are determinant for Rhizaria ability to thrive in oceanic ecosystems, the mechanisms for symbiotic interactions are unclear. Using high-throughput sequencing technology (i.e., 454), we generated large Expressed Sequence Tag (EST) datasets from four uncultured Rhizaria, an acantharian (Amphilonche elongata), two polycystines (Collozoum sp. and Spongosphaera streptacantha), and one phaeodarian (Aulacantha scolymantha). We assessed the main genetic features of the host/symbionts consortium (i.e., the holobiont) transcriptomes and found rRNA sequences affiliated to a wide range of bacteria and protists in all samples, suggesting that diverse microbial communities are associated with the holobionts. A particular focus was then carried out to search for genes potentially involved in symbiotic processes such as the presence of c-type lectins-coding genes, which are proteins that play a role in cell recognition among eukaryotes. Unigenes coding putative c-type lectin domains (CTLD) were found in the species bearing photosynthetic symbionts (A. elongata, Collozoum sp., and S. streptacantha) but not in the non-symbiotic one (A. scolymantha). More particularly, phylogenetic analyses group CTLDs from A. elongata and Collozoum sp. on a distinct branch from S. streptacantha CTLDs, which contained carbohydrate-binding motifs typically observed in other marine photosymbiosis. Our data suggest that similarly to other well-known marine photosymbiosis involving metazoans, the interactions of glycans with c-type lectins is likely involved in modulation of the host/symbiont specific recognition in Radiolaria.

18.
ISME J ; 6(8): 1480-98, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22278671

RESUMEN

The composition of photosynthetic pico and nanoeukaryotes was investigated in the North East Pacific and the Arctic Ocean with special emphasis on the Beaufort Sea during the MALINA cruise in summer 2009. Photosynthetic populations were sorted using flow cytometry based on their size and pigment fluorescence. Diversity of the sorted photosynthetic eukaryotes was determined using terminal-restriction fragment length polymorphism analysis and cloning/sequencing of the 18S ribosomal RNA gene. Picoplankton was dominated by Mamiellophyceae, a class of small green algae previously included in the prasinophytes: in the North East Pacific, the contribution of an Arctic Micromonas ecotype increased steadily northward becoming the only taxon occurring at most stations throughout the Beaufort Sea. In contrast, nanoplankton was more diverse: North Pacific stations were dominated by Pseudo-nitzschia sp. whereas those in the Beaufort Sea were dominated by two distinct Chaetoceros species as well as by Chrysophyceae, Pelagophyceae and Chrysochromulina spp.. This study confirms the importance of Arctic Micromonas within picoplankton throughout the Beaufort Sea and demonstrates that the photosynthetic picoeukaryote community in the Arctic is much less diverse than at lower latitudes. Moreover, in contrast to what occurs in warmer waters, most of the key pico- and nanoplankton species found in the Beaufort Sea could be successfully established in culture.


Asunto(s)
Biodiversidad , Plancton/clasificación , Plancton/genética , Polimorfismo de Longitud del Fragmento de Restricción , ARN Ribosómico 18S/genética , Agua de Mar/microbiología , Regiones Árticas , Chlorophyta , Diatomeas/genética , Eucariontes/genética , Citometría de Flujo , Datos de Secuencia Molecular , Océanos y Mares , Fotosíntesis/genética , Filogenia , Estaciones del Año , Temperatura
19.
Protist ; 159(2): 177-93, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18042429

RESUMEN

Recent studies have shown that the cosmopolitan diatom Skeletonema costatum sensu lato is composed of several morphologically and genetically distinct species. To assess whether the separate species have a cosmopolitan distribution, we analysed 184 strains from marine and estuarine sites worldwide. We identified the strains using light and electron microscopy, and we sequenced the hyper-variable region of nuclear LSU rDNA. All recently described species were genetically distinct, and all but two were morphologically distinct. Variability was found for the only ultrastructural character used to distinguish Skeletonema dohrnii and S. marinoi, which cannot be identified based on morphology alone. Furthermore, multiple genetically distinct taxa, which may represent cryptic species, were found within the S. menzelii and S. tropicum clades. We found that all currently recognized species of Skeletonema are widespread, however, gaps seem to occur in their geographical ranges. For example, some species are found in both the northern and southern temperate latitudes whereas other species appear to have only subtropical to tropical ranges. Skeletonema pseudocostatum and S. grethae seem to have more restricted geographical ranges because the former was not found along American coasts and the latter was encountered only in US waters. A taxonomic update is provided for Skeletonema strains currently available in several culture collections, which could aid reinterpretation of results obtained in comparative studies using these strains.


Asunto(s)
Biodiversidad , Diatomeas/aislamiento & purificación , Geografía , ADN de Algas/genética , ADN Ribosómico/genética , Diatomeas/clasificación , Diatomeas/citología , Diatomeas/genética , Datos de Secuencia Molecular , ARN Ribosómico 28S/genética , ARN Ribosómico 5.8S/genética , ARN Ribosómico 5S/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...