Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurol Clin Pract ; 14(1): e200245, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38585236

RESUMEN

Background and Objectives: To understand why patients with drug-resistant epilepsy (DRE) pursue invasive electrical brain stimulation (EBS). Methods: We interviewed patients with DRE (n = 20) and their caregivers about their experiences in pursuing EBS approximately 1 year post device implant. Inductive analysis was applied to identify key motivating factors. Results: The cohort included participants aged from teens to 50s with deep brain stimulation, vagus nerve stimulation, responsive neurostimulation, and chronic subthreshold cortical stimulation. Patients' motivations included (1) improved quality of life (2) intolerability of antiseizure medications, (3) desperation, and (4) patient-family dynamics. Both patients and caregivers described a desire to alleviate burdens of the other. Patient apprehensions about EBS focused on invasiveness and the presence of electrodes in the brain. Previous experiences with invasive monitoring and the ability to see hardware in person during clinical visits influenced patients' comfort in proceeding with EBS. Despite realistic expectations for modest and delayed benefits, patients held out hope for an exceptionally positive outcome. Discussion: Our findings describe the motivations and decision-making process for patients with DRE who pursue invasive EBS. Patients balance feelings of desperation, personal goals, frustration with medication side effects, fears about surgery, and potential pressure from concerned caregivers. These factors together with the sense that patients have exhausted therapeutic alternatives may explain the limited decisional ambivalence observed in this cohort. These themes highlight opportunities for epilepsy care teams to support patient decision-making processes.

2.
PLoS Comput Biol ; 20(4): e1011152, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38662736

RESUMEN

Numerous physiological processes are cyclical, but sampling these processes densely enough to perform frequency decomposition and subsequent analyses can be challenging. Mathematical approaches for decomposition and reconstruction of sparsely and irregularly sampled signals are well established but have been under-utilized in physiological applications. We developed a basis pursuit denoising with polynomial detrending (BPWP) model that recovers oscillations and trends from sparse and irregularly sampled timeseries. We validated this model on a unique dataset of long-term inter-ictal epileptiform discharge (IED) rates from human hippocampus recorded with a novel investigational device with continuous local field potential sensing. IED rates have well established circadian and multiday cycles related to sleep, wakefulness, and seizure clusters. Given sparse and irregular samples of IED rates from multi-month intracranial EEG recordings from ambulatory humans, we used BPWP to compute narrowband spectral power and polynomial trend coefficients and identify IED rate cycles in three subjects. In select cases, we propose that random and irregular sampling may be leveraged for frequency decomposition of physiological signals. Trial Registration: NCT03946618.


Asunto(s)
Epilepsia , Humanos , Algoritmos , Biología Computacional/métodos , Electrocorticografía/métodos , Electroencefalografía/métodos , Epilepsia/fisiopatología , Epilepsia/diagnóstico , Hipocampo/fisiopatología , Hipocampo/fisiología , Modelos Neurológicos , Convulsiones/fisiopatología , Convulsiones/diagnóstico , Procesamiento de Señales Asistido por Computador , Femenino
3.
medRxiv ; 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38405801

RESUMEN

High frequency anterior nucleus of the thalamus deep brain stimulation (ANT DBS) is an established therapy for treatment resistant focal epilepsies. Although high frequency-ANT DBS is well tolerated, patients are rarely seizure free and the efficacy of other DBS parameters and their impact on comorbidities of epilepsy such as depression and memory dysfunction remain unclear. The purpose of this study was to assess the impact of low vs high frequency ANT DBS on verbal memory and self-reported anxiety and depression symptoms. Five patients with treatment resistant temporal lobe epilepsy were implanted with an investigational brain stimulation and sensing device capable of ANT DBS and ambulatory intracranial electroencephalographic (iEEG) monitoring, enabling long-term detection of electrographic seizures. While patients received therapeutic high frequency (100 and 145 Hz continuous and cycling) and low frequency (2 and 7 Hz continuous) stimulation, they completed weekly free recall verbal memory tasks and thrice weekly self-reports of anxiety and depression symptom severity. Mixed effects models were then used to evaluate associations between memory scores, anxiety and depression self-reports, seizure counts, and stimulation frequency. Memory score was significantly associated with stimulation frequency, with higher free recall verbal memory scores during low frequency ANT DBS. Self-reported anxiety and depression symptom severity was not significantly associated with stimulation frequency. These findings suggest the choice of ANT DBS stimulation parameter may impact patients' cognitive function, independently of its impact on seizure rates.

4.
medRxiv ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38370724

RESUMEN

Temporal lobe epilepsy is a common neurological disease characterized by recurrent seizures. These seizures often originate from limbic networks and people also experience chronic comorbidities related to memory, mood, and sleep (MMS). Deep brain stimulation targeting the anterior nucleus of the thalamus (ANT-DBS) is a proven therapy, but the optimal stimulation parameters remain unclear. We developed a neurotechnology platform for tracking seizures and MMS to enable data streaming between an investigational brain sensing-stimulation implant, mobile devices, and a cloud environment. Artificial Intelligence algorithms provided accurate catalogs of seizures, interictal epileptiform spikes, and wake-sleep brain states. Remotely administered memory and mood assessments were used to densely sample cognitive and behavioral response during ANT-DBS. We evaluated the efficacy of low-frequency versus high-frequency ANT-DBS. They both reduced seizures, but low-frequency ANT-DBS showed greater reductions and better sleep and memory. These results highlight the potential of synchronized brain sensing and behavioral tracking for optimizing neuromodulation therapy.

5.
J Neurosci ; 43(39): 6653-6666, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37620157

RESUMEN

The impedance is a fundamental electrical property of brain tissue, playing a crucial role in shaping the characteristics of local field potentials, the extent of ephaptic coupling, and the volume of tissue activated by externally applied electrical brain stimulation. We tracked brain impedance, sleep-wake behavioral state, and epileptiform activity in five people with epilepsy living in their natural environment using an investigational device. The study identified impedance oscillations that span hours to weeks in the amygdala, hippocampus, and anterior nucleus thalamus. The impedance in these limbic brain regions exhibit multiscale cycles with ultradian (∼1.5-1.7 h), circadian (∼21.6-26.4 h), and infradian (∼20-33 d) periods. The ultradian and circadian period cycles are driven by sleep-wake state transitions between wakefulness, nonrapid eye movement (NREM) sleep, and rapid eye movement (REM) sleep. Limbic brain tissue impedance reaches a minimum value in NREM sleep, intermediate values in REM sleep, and rises through the day during wakefulness, reaching a maximum in the early evening before sleep onset. Infradian (∼20-33 d) impedance cycles were not associated with a distinct behavioral correlate. Brain tissue impedance is known to strongly depend on the extracellular space (ECS) volume, and the findings reported here are consistent with sleep-wake-dependent ECS volume changes recently observed in the rodent cortex related to the brain glymphatic system. We hypothesize that human limbic brain ECS changes during sleep-wake state transitions underlie the observed multiscale impedance cycles. Impedance is a simple electrophysiological biomarker that could prove useful for tracking ECS dynamics in human health, disease, and therapy.SIGNIFICANCE STATEMENT The electrical impedance in limbic brain structures (amygdala, hippocampus, anterior nucleus thalamus) is shown to exhibit oscillations over multiple timescales. We observe that impedance oscillations with ultradian and circadian periodicities are associated with transitions between wakefulness, NREM, and REM sleep states. There are also impedance oscillations spanning multiple weeks that do not have a clear behavioral correlate and whose origin remains unclear. These multiscale impedance oscillations will have an impact on extracellular ionic currents that give rise to local field potentials, ephaptic coupling, and the tissue activated by electrical brain stimulation. The approach for measuring tissue impedance using perturbational electrical currents is an established engineering technique that may be useful for tracking ECS volume.


Asunto(s)
Sueño REM , Sueño , Humanos , Impedancia Eléctrica , Sueño/fisiología , Sueño REM/fisiología , Encéfalo/fisiología , Vigilia/fisiología , Hipocampo
6.
J Neural Eng ; 20(4)2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37536320

RESUMEN

Objective.Long-term intracranial electroencephalography (iEEG) in freely behaving animals provides valuable electrophysiological information and when correlated with animal behavior is useful for investigating brain function.Approach.Here we develop and validate an automated iEEG-based sleep-wake classifier for canines using expert sleep labels derived from simultaneous video, accelerometry, scalp electroencephalography (EEG) and iEEG monitoring. The video, scalp EEG, and accelerometry recordings were manually scored by a board-certified sleep expert into sleep-wake state categories: awake, rapid-eye-movement (REM) sleep, and three non-REM sleep categories (NREM1, 2, 3). The expert labels were used to train, validate, and test a fully automated iEEG sleep-wake classifier in freely behaving canines.Main results. The iEEG-based classifier achieved an overall classification accuracy of 0.878 ± 0.055 and a Cohen's Kappa score of 0.786 ± 0.090. Subsequently, we used the automated iEEG-based classifier to investigate sleep over multiple weeks in freely behaving canines. The results show that the dogs spend a significant amount of the day sleeping, but the characteristics of daytime nap sleep differ from night-time sleep in three key characteristics: during the day, there are fewer NREM sleep cycles (10.81 ± 2.34 cycles per day vs. 22.39 ± 3.88 cycles per night;p< 0.001), shorter NREM cycle durations (13.83 ± 8.50 min per day vs. 15.09 ± 8.55 min per night;p< 0.001), and dogs spend a greater proportion of sleep time in NREM sleep and less time in REM sleep compared to night-time sleep (NREM 0.88 ± 0.09, REM 0.12 ± 0.09 per day vs. NREM 0.80 ± 0.08, REM 0.20 ± 0.08 per night;p< 0.001).Significance.These results support the feasibility and accuracy of automated iEEG sleep-wake classifiers for canine behavior investigations.


Asunto(s)
Fases del Sueño , Sueño , Perros , Animales , Fases del Sueño/fisiología , Sueño/fisiología , Sueño REM/fisiología , Electroencefalografía/métodos , Electrocorticografía , Vigilia/fisiología
7.
Epilepsia ; 64(9): 2421-2433, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37303239

RESUMEN

OBJECTIVE: Previous studies suggested that patients with epilepsy might be able to forecast their own seizures. This study aimed to assess the relationships between premonitory symptoms, perceived seizure risk, and future and recent self-reported and electroencephalographically (EEG)-confirmed seizures in ambulatory patients with epilepsy in their natural home environments. METHODS: Long-term e-surveys were collected from patients with and without concurrent EEG recordings. Information obtained from the e-surveys included medication adherence, sleep quality, mood, stress, perceived seizure risk, and seizure occurrences preceding the survey. EEG seizures were identified. Univariate and multivariate generalized linear mixed-effect regression models were used to estimate odds ratios (ORs) for the assessment of the relationships. Results were compared with the seizure forecasting classifiers and device forecasting literature using a mathematical formula converting OR to equivalent area under the curve (AUC). RESULTS: Fifty-four subjects returned 10 269 e-survey entries, with four subjects acquiring concurrent EEG recordings. Univariate analysis revealed that increased stress (OR = 2.01, 95% confidence interval [CI] = 1.12-3.61, AUC = .61, p = .02) was associated with increased relative odds of future self-reported seizures. Multivariate analysis showed that previous self-reported seizures (OR = 5.37, 95% CI = 3.53-8.16, AUC = .76, p < .001) were most strongly associated with future self-reported seizures, and high perceived seizure risk (OR = 3.34, 95% CI = 1.87-5.95, AUC = .69, p < .001) remained significant when prior self-reported seizures were added to the model. No correlation with medication adherence was found. No significant association was found between e-survey responses and subsequent EEG seizures. SIGNIFICANCE: Our results suggest that patients may tend to self-forecast seizures that occur in sequential groupings and that low mood and increased stress may be the result of previous seizures rather than independent premonitory symptoms. Patients in the small cohort with concurrent EEG showed no ability to self-predict EEG seizures. The conversion from OR to AUC values facilitates direct comparison of performance between survey and device studies involving survey premonition and forecasting.


Asunto(s)
Epilepsia , Convulsiones , Humanos , Convulsiones/diagnóstico , Convulsiones/epidemiología , Epilepsia/complicaciones , Epilepsia/diagnóstico , Epilepsia/epidemiología , Electroencefalografía/métodos , Análisis Multivariante , Encuestas y Cuestionarios
8.
medRxiv ; 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37034596

RESUMEN

Objective: Previous studies suggested that patients with epilepsy might be able to fore-cast their own seizures. We sought to assess the relationships of premonitory symptoms and perceived seizure risk with future and recent self-reported and EEG-confirmed seizures in the subjects living with epilepsy in their natural home environments. Methods: We collected long-term e-surveys from ambulatory patients with and without concurrent EEG recordings. Information obtained from the e-surveys included medication compliance, sleep quality, mood, stress, perceived seizure risk and seizure occurrences preceding the survey. EEG seizures were identified. Univariate and multivariate generalized linear mixed-effect regression models were used to estimate odds ratios (ORs) for the assessment of the relationships. Results were compared with device seizure forecasting literature using a mathematical formula converting OR to equivalent area under the curve (AUC). Results: Sixty-nine subjects returned 12,590 e-survey entries, with four subjects acquiring concurrent EEG recordings. Univariate analysis revealed increased stress (OR = 2.52, 95% CI = [1.52, 4.14], p < 0.001) and decreased mood (0.32, [0.13, 0.82], 0.02) were associated with increased relative odds of future self-reported seizures. On multivariate analysis, previous self-reported seizures (4.24, [2.69, 6.68], < 0.001) were most strongly associated with future self-reported seizures, and high perceived seizure risk (3.30, [1.97, 5.52], < 0.001) remained significant when prior self-reported seizures were added to the model. No significant association was found between e-survey responses and subsequent EEG seizures. Significance: It appears that patients may tend to self-forecast seizures that occur in sequential groupings. Our results suggest that low mood and increased stress may be the result of previous seizures rather than independent premonitory symptoms. Patients in the small cohort with concurrent EEG showed no ability to self-predict EEG seizures. The conversion from OR to AUC values facilitates direct comparison of performance between survey and device studies involving survey premonition and forecasting. Key points: Long-term e-surveys data and concurrent EEG signals were collected across three study sites to assess the ability of the patients to self-forecast their seizures.Patients may tend to self-forecast self-reported seizures that occur in sequential groupings.Factors, such as mood and stress, may not be independent premonitory symptoms but may be the consequence of recent seizures.No ability to self-forecast EEG confirmed seizures was observed in a small cohort with concurrent EEG validation.A mathematic relation between OR and AUC provides a means to compare forecasting performance between survey and device studies.

9.
Epilepsia ; 64(4): 962-972, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36764672

RESUMEN

OBJECTIVE: High-frequency oscillations are considered among the most promising interictal biomarkers of the epileptogenic zone in patients suffering from pharmacoresistant focal epilepsy. However, there is no clear definition of pathological high-frequency oscillations, and the existing detectors vary in methodology, performance, and computational costs. This study proposes relative entropy as an easy-to-use novel interictal biomarker of the epileptic tissue. METHODS: We evaluated relative entropy and high-frequency oscillation biomarkers on intracranial electroencephalographic data from 39 patients with seizure-free postoperative outcome (Engel Ia) from three institutions. We tested their capability to localize the epileptogenic zone, defined as resected contacts located in the seizure onset zone. The performance was compared using areas under the receiver operating curves (AUROCs) and precision-recall curves. Then we tested whether a universal threshold can be used to delineate the epileptogenic zone across patients from different institutions. RESULTS: Relative entropy in the ripple band (80-250 Hz) achieved an average AUROC of .85. The normalized high-frequency oscillation rate in the ripple band showed an identical AUROC of .85. In contrast to high-frequency oscillations, relative entropy did not require any patient-level normalization and was easy and fast to calculate due to its clear and straightforward definition. One threshold could be set across different patients and institutions, because relative entropy is independent of signal amplitude and sampling frequency. SIGNIFICANCE: Although both relative entropy and high-frequency oscillations have a similar performance, relative entropy has significant advantages such as straightforward definition, computational speed, and universal interpatient threshold, making it an easy-to-use promising biomarker of the epileptogenic zone.


Asunto(s)
Electroencefalografía , Epilepsia , Humanos , Entropía , Electroencefalografía/métodos , Epilepsia/diagnóstico , Epilepsia/cirugía , Electrocorticografía/métodos , Biomarcadores
10.
PLoS One ; 17(11): e0275233, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36327265

RESUMEN

The diagnosis of Alzheimer's disease (AD) needs to be improved. We investigated if hippocampal subfield volume measured by structural imaging, could supply information, so that the diagnosis of AD could be improved. In this study, subjects were classified based on clinical, neuropsychological, and amyloid positivity or negativity using PET scans. Data from 478 elderly Korean subjects grouped as cognitively unimpaired ß-amyloid-negative (NC), cognitively unimpaired ß-amyloid-positive (aAD), mild cognitively impaired ß-amyloid-positive (pAD), mild cognitively impaired-specific variations not due to dementia ß-amyloid-negative (CIND), severe cognitive impairment ß-amyloid-positive (ADD+) and severe cognitive impairment ß-amyloid-negative (ADD-) were used. NC and aAD groups did not show significant volume differences in any subfields. The CIND did not show significant volume differences when compared with either the NC or the aAD (except L-HATA). However, pAD showed significant volume differences in Sub, PrS, ML, Tail, GCMLDG, CA1, CA4, HATA, and CA3 when compared with the NC and aAD. The pAD group also showed significant differences in the hippocampal tail, CA1, CA4, molecular layer, granule cells/molecular layer/dentate gyrus, and CA3 when compared with the CIND group. The ADD- group had significantly larger volumes than the ADD+ group in the bilateral tail, SUB, PrS, and left ML. The results suggest that early amyloid depositions in cognitive normal stages are not accompanied by significant bilateral subfield volume atrophy. There might be intense and accelerated subfield volume atrophy in the later stages associated with the cognitive impairment in the pAD stage, which subsequently could drive the progression to AD dementia. Early subfield volume atrophy associated with the ß-amyloid burden may be characterized by more symmetrical atrophy in CA regions than in other subfields. We conclude that the hippocampal subfield volumetric differences from structural imaging show promise for improving the diagnosis of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Anciano , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Imagen por Resonancia Magnética , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Atrofia/patología , Péptidos beta-Amiloides , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología
11.
Brain Commun ; 4(3): fcac115, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35755635

RESUMEN

Early implantable epilepsy therapy devices provided open-loop electrical stimulation without brain sensing, computing, or an interface for synchronized behavioural inputs from patients. Recent epilepsy stimulation devices provide brain sensing but have not yet developed analytics for accurately tracking and quantifying behaviour and seizures. Here we describe a distributed brain co-processor providing an intuitive bi-directional interface between patient, implanted neural stimulation and sensing device, and local and distributed computing resources. Automated analysis of continuous streaming electrophysiology is synchronized with patient reports using a handheld device and integrated with distributed cloud computing resources for quantifying seizures, interictal epileptiform spikes and patient symptoms during therapeutic electrical brain stimulation. The classification algorithms for interictal epileptiform spikes and seizures were developed and parameterized using long-term ambulatory data from nine humans and eight canines with epilepsy, and then implemented prospectively in out-of-sample testing in two pet canines and four humans with drug-resistant epilepsy living in their natural environments. Accurate seizure diaries are needed as the primary clinical outcome measure of epilepsy therapy and to guide brain-stimulation optimization. The brain co-processor system described here enables tracking interictal epileptiform spikes, seizures and correlation with patient behavioural reports. In the future, correlation of spikes and seizures with behaviour will allow more detailed investigation of the clinical impact of spikes and seizures on patients.

12.
J Neural Eng ; 19(1)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35038687

RESUMEN

Objective.Electrical deep brain stimulation (DBS) is an established treatment for patients with drug-resistant epilepsy. Sleep disorders are common in people with epilepsy, and DBS may actually further disturb normal sleep patterns and sleep quality. Novel implantable devices capable of DBS and streaming of continuous intracranial electroencephalography (iEEG) signals enable detailed assessments of therapy efficacy and tracking of sleep related comorbidities. Here, we investigate the feasibility of automated sleep classification using continuous iEEG data recorded from Papez's circuit in four patients with drug resistant mesial temporal lobe epilepsy using an investigational implantable sensing and stimulation device with electrodes implanted in bilateral hippocampus (HPC) and anterior nucleus of thalamus (ANT).Approach.The iEEG recorded from HPC is used to classify sleep during concurrent DBS targeting ANT. Simultaneous polysomnography (PSG) and sensing from HPC were used to train, validate and test an automated classifier for a range of ANT DBS frequencies: no stimulation, 2 Hz, 7 Hz, and high frequency (>100 Hz).Main results.We show that it is possible to build a patient specific automated sleep staging classifier using power in band features extracted from one HPC iEEG sensing channel. The patient specific classifiers performed well under all thalamic DBS frequencies with an average F1-score 0.894, and provided viable classification into awake and major sleep categories, rapid eye movement (REM) and non-REM. We retrospectively analyzed classification performance with gold-standard PSG annotations, and then prospectively deployed the classifier on chronic continuous iEEG data spanning multiple months to characterize sleep patterns in ambulatory patients living in their home environment.Significance.The ability to continuously track behavioral state and fully characterize sleep should prove useful for optimizing DBS for epilepsy and associated sleep, cognitive and mood comorbidities.


Asunto(s)
Núcleos Talámicos Anteriores , Estimulación Encefálica Profunda , Trastornos del Sueño-Vigilia , Encéfalo , Estimulación Encefálica Profunda/métodos , Epilepsia/complicaciones , Hipocampo , Humanos , Estudios Retrospectivos , Trastornos del Sueño-Vigilia/complicaciones , Trastornos del Sueño-Vigilia/diagnóstico , Trastornos del Sueño-Vigilia/terapia , Tálamo
13.
Sci Rep ; 11(1): 24250, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34930926

RESUMEN

Chronic brain recordings suggest that seizure risk is not uniform, but rather varies systematically relative to daily (circadian) and multiday (multidien) cycles. Here, one human and seven dogs with naturally occurring epilepsy had continuous intracranial EEG (median 298 days) using novel implantable sensing and stimulation devices. Two pet dogs and the human subject received concurrent thalamic deep brain stimulation (DBS) over multiple months. All subjects had circadian and multiday cycles in the rate of interictal epileptiform spikes (IES). There was seizure phase locking to circadian and multiday IES cycles in five and seven out of eight subjects, respectively. Thalamic DBS modified circadian (all 3 subjects) and multiday (analysis limited to the human participant) IES cycles. DBS modified seizure clustering and circadian phase locking in the human subject. Multiscale cycles in brain excitability and seizure risk are features of human and canine epilepsy and are modifiable by thalamic DBS.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Epilepsia/prevención & control , Convulsiones/prevención & control , Tálamo/fisiología , Animales , Ritmo Circadiano , Perros , Electroencefalografía , Humanos , Riesgo
14.
Epilepsia ; 62(11): 2627-2639, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34536230

RESUMEN

OBJECTIVE: Verbal memory dysfunction is common in focal, drug-resistant epilepsy (DRE). Unfortunately, surgical removal of seizure-generating brain tissue can be associated with further memory decline. Therefore, localization of both the circuits generating seizures and those underlying cognitive functions is critical in presurgical evaluations for patients who may be candidates for resective surgery. We used intracranial electroencephalographic (iEEG) recordings during a verbal memory task to investigate word encoding in focal epilepsy. We hypothesized that engagement in a memory task would exaggerate local iEEG feature differences between the seizure onset zone (SOZ) and neighboring tissue as compared to wakeful rest ("nontask"). METHODS: Ten participants undergoing presurgical iEEG evaluation for DRE performed a free recall verbal memory task. We evaluated three iEEG features in SOZ and non-SOZ electrodes during successful word encoding and compared them with nontask recordings: interictal epileptiform spike (IES) rates, power in band (PIB), and relative entropy (REN; a functional connectivity measure). RESULTS: We found a complex pattern of PIB and REN changes in SOZ and non-SOZ electrodes during successful word encoding compared to nontask. Successful word encoding was associated with a reduction in local electrographic functional connectivity (increased REN), which was most exaggerated in temporal lobe SOZ. The IES rates were reduced during task, but only in the non-SOZ electrodes. Compared with nontask, REN features during task yielded marginal improvements in SOZ classification. SIGNIFICANCE: Previous studies have supported REN as a biomarker for epileptic brain. We show that REN differences between SOZ and non-SOZ are enhanced during a verbal memory task. We also show that IESs are reduced during task in non-SOZ, but not in SOZ. These findings support the hypothesis that SOZ and non-SOZ respond differently to task and warrant further exploration into the use of cognitive tasks to identify functioning memory circuits and localize SOZ.


Asunto(s)
Epilepsia Refractaria , Epilepsias Parciales , Encéfalo , Epilepsia Refractaria/cirugía , Electrocorticografía , Electroencefalografía , Epilepsias Parciales/cirugía , Humanos , Convulsiones
15.
Front Hum Neurosci ; 15: 702605, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34381344

RESUMEN

Intracranial electroencephalographic (iEEG) recordings from patients with epilepsy provide distinct opportunities and novel data for the study of co-occurring psychiatric disorders. Comorbid psychiatric disorders are very common in drug-resistant epilepsy and their added complexity warrants careful consideration. In this review, we first discuss psychiatric comorbidities and symptoms in patients with epilepsy. We describe how epilepsy can potentially impact patient presentation and how these factors can be addressed in the experimental designs of studies focused on the electrophysiologic correlates of mood. Second, we review emerging technologies to integrate long-term iEEG recording with dense behavioral tracking in naturalistic environments. Third, we explore questions on how best to address the intersection between epilepsy and psychiatric comorbidities. Advances in ambulatory iEEG and long-term behavioral monitoring technologies will be instrumental in studying the intersection of seizures, epilepsy, psychiatric comorbidities, and their underlying circuitry.

16.
Brain Commun ; 3(2): fcab102, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34131643

RESUMEN

Routine scalp EEG is essential in the clinical diagnosis and management of epilepsy. However, a normal scalp EEG (based on expert visual review) recorded from a patient with epilepsy can cause delays in diagnosis and clinical care delivery. Here, we investigated whether normal EEGs might contain subtle electrophysiological clues of epilepsy. Specifically, we investigated (i) whether there are indicators of abnormal brain electrophysiology in normal EEGs of epilepsy patients, and (ii) whether such abnormalities are modulated by the side of the brain generating seizures in focal epilepsy. We analysed awake scalp EEG recordings of age-matched groups of 144 healthy individuals and 48 individuals with drug-resistant focal epilepsy who had normal scalp EEGs. After preprocessing, using a bipolar montage of eight channels, we extracted the fraction of spectral power in the alpha band (8-13 Hz) relative to a wide band of 0.5-40 Hz within 10-s windows. We analysed the extracted features for (i) the extent to which people with drug-resistant focal epilepsy differed from healthy subjects, and (ii) whether differences within the drug-resistant focal epilepsy patients were related to the hemisphere generating seizures. We then used those differences to classify whether an EEG is likely to have been recorded from a person with drug-resistant focal epilepsy, and if so, the epileptogenic hemisphere. Furthermore, we tested the significance of these differences while controlling for confounders, such as acquisition system, age and medications. We found that the fraction of alpha power is generally reduced (i) in drug-resistant focal epilepsy compared to healthy controls, and (ii) in right-handed drug-resistant focal epilepsy subjects with left hemispheric seizures compared to those with right hemispheric seizures, and that the differences are most prominent in the frontal and temporal regions. The fraction of alpha power yielded area under curve values of 0.83 in distinguishing drug-resistant focal epilepsy from healthy and 0.77 in identifying the epileptic hemisphere in drug-resistant focal epilepsy patients. Furthermore, our results suggest that the differences in alpha power are greater when compared with differences attributable to acquisition system differences, age and medications. Our findings support that EEG-based measures of normal brain function, such as the normalized spectral power of alpha activity, may help identify patients with epilepsy even when an EEG does not contain any epileptiform activity, recorded seizures or other abnormalities. Although alpha abnormalities are unlikely to be disease-specific, we propose that such abnormalities may provide a higher pre-test probability for epilepsy when an individual being screened for epilepsy has a normal EEG on visual assessment.

18.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 3460-3464, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-33018748

RESUMEN

The absence of epileptiform activity in a scalp electroencephalogram (EEG) recorded from a potential epilepsy patient can cause delays in clinical care delivery. Here we present a machine-learning-based approach to find evidence for epilepsy in scalp EEGs that do not contain any epileptiform activity, according to expert visual review (i.e., "normal" EEGs). We found that deviations in the EEG features representing brain health, such as the alpha rhythm, can indicate the potential for epilepsy and help lateralize seizure focus, even when commonly recognized epileptiform features are absent. Hence, we developed a machine-learning-based approach that utilizes alpha-rhythm-related features to classify 1) whether an EEG was recorded from an epilepsy patient, and 2) if so, the seizure-generating side of the patient's brain. We evaluated our approach using "normal" scalp EEGs of 48 patients with drug-resistant focal epilepsy and 144 healthy individuals, and a naive Bayes classifier achieved area under ROC curve (AUC) values of 0.81 and 0.72 for the two classification tasks, respectively. These findings suggest that our methodology is useful in the absence of interictal epileptiform activity and can enhance the probability of diagnosing epilepsy at the earliest possible time.


Asunto(s)
Epilepsia , Teorema de Bayes , Encéfalo , Electroencefalografía , Epilepsia/diagnóstico , Humanos , Convulsiones/diagnóstico
19.
Comput Biol Med ; 120: 103742, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32421647

RESUMEN

Image quality control (QC) is a critical and computationally intensive component of functional magnetic resonance imaging (fMRI). Artifacts caused by physiologic signals or hardware malfunctions are usually identified and removed during data processing offline, well after scanning sessions are complete. A system with the computational efficiency to identify and remove artifacts during image acquisition would permit rapid adjustment of protocols as issues arise during experiments. To improve the speed and accuracy of QC and functional image correction, we developed Fast Anatomy-Based Image Correction (Fast ANATICOR) with newly implemented nuisance models and an improved pipeline. We validated its performance on a dataset consisting of normal scans and scans containing known hardware-driven artifacts. Fast ANATICOR's increased processing speed may make real-time QC and image correction feasible as compared with the existing offline method.


Asunto(s)
Artefactos , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Procesamiento de Imagen Asistido por Computador , Control de Calidad
20.
Brain Behav ; 9(12): e01431, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31697455

RESUMEN

INTRODUCTION: While the clinical efficacy of deep brain stimulation (DBS) the treatment of motor-related symptoms is well established, the mechanism of action of the resulting cognitive and behavioral effects has been elusive. METHODS: By combining functional magnetic resonance imaging (fMRI) and DBS, we investigated the pattern of blood-oxygenation-level-dependent (BOLD) signal changes induced by stimulating the nucleus accumbens in a large animal model. RESULTS: We found that diffused BOLD activation across multiple functional networks, including the prefrontal, limbic, and thalamic regions during the stimulation, resulted in a significant change in inter-regional functional connectivity. More importantly, the magnitude of the modulation was closely related to the strength of the inter-regional resting-state functional connectivity. CONCLUSIONS: Nucleus accumbens stimulation affects the functional activity in networks that underlie cognition and behavior. Our study provides an insight into the nature of the functional connectivity, which mediates activation effect via brain networks.


Asunto(s)
Cognición/fisiología , Núcleo Accumbens/fisiología , Animales , Encéfalo/fisiología , Mapeo Encefálico/métodos , Estimulación Encefálica Profunda/métodos , Imagen por Resonancia Magnética/métodos , Masculino , Modelos Animales , Conducción Nerviosa/fisiología , Sus scrofa , Porcinos , Tálamo/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...