Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Viruses ; 16(5)2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38793693

RESUMEN

Subgenomic flaviviral RNAs (sfRNAs) are small non-coding products of the incomplete degradation of viral genomic RNA. They accumulate during flaviviral infection and have been associated with many functional roles inside the host cell. Studies so far have demonstrated that sfRNA plays a crucial role in determining West Nile virus (WNV) pathogenicity. However, its modulatory role on neuronal homeostasis has not been studied in depth. In this study, we investigated the mechanism of sfRNA biosynthesis and its importance for WNV replication in neuronal cells. We found that sfRNA1 is functionally redundant for both replication and translation of WNV. However, the concurrent absence of sfRNA1 and sfRNA2 species is detrimental for the survival of the virus. Differential expression analysis on RNA-seq data from WT and ΔsfRNA replicon cell lines revealed transcriptional changes induced by sfRNA and identified a number of putative targets. Overall, it was shown that sfRNA contributes to the viral evasion by suppressing the interferon-mediated antiviral response. An additional differential expression analysis among replicon and control Neuro2A cells also clarified the transcriptional changes that support WNV replication in neuronal cells. Increased levels of translation and oxidative phosphorylation, post-translational modification processes, and activated DNA repair pathways were observed in replicon cell lines, while developmental processes such as axonal growth were deficient.


Asunto(s)
Neuronas , ARN Viral , Replicación Viral , Virus del Nilo Occidental , Virus del Nilo Occidental/genética , Virus del Nilo Occidental/fisiología , ARN Viral/genética , ARN Viral/metabolismo , Neuronas/virología , Neuronas/metabolismo , Animales , Línea Celular , Genoma Viral , Fiebre del Nilo Occidental/virología , Humanos , Ratones , Regulación Viral de la Expresión Génica
2.
Ann Vasc Surg ; 99: 366-379, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37922957

RESUMEN

BACKGROUND: Small abdominal aortic aneurysms (AAAs) are asymptomatic but can potentially lead to rupture if left undetected. To date, there is a lack of simple nonradiologic routine tests available for diagnosing AAAs. MicroRNAs (miRNAs) have been proven to be good-quality biomarkers in several diseases, including AAA. METHODS: An attempt to identify a panel of circulating miRNAs with differential expression in AAAs via next-generation sequencing (NGS) was performed in serum samples: small AAAs (n = 3), large AAAs (n = 3), and controls (n = 3). For miR-24, validation with real-time polymerase chain reaction (PCR) was undertaken in a larger group (n = 80). RESULTS: In the NGS study, 23 miRNAs were identified as differentially expressed (with statistical significance) in small AAAs in comparison with controls. Among them, miR-24 showed the largest upregulation with 23-fold change (log2FC 4.5, P = 0.024). For large AAAs compared with controls, and small AAAs compared with large AAAs, a panel of 33 and 131 miRNAs showed statistically significant differential expression, respectively. Based on the results of the NGS stage, a literature search was performed, and information regarding AAA pathogenesis, coronary artery disease, and peripheral arterial disease was documented where applicable: miR-24, miR-103, miR-193a, miR-486, miR-582, and miR-3663. Of these 6 miRNAs, miR-24 was chosen for further validation with real-time PCR. Additionally, in the NGS study analysis, 17 miRNAs were common between the small-large AAAs, small AAAs-controls, and large AAAs-controls comparisons: miR-7846, miR-3195, miR-486-2, miR-3194, miR-5589, miR-1538, miR-3178, miR-4771-1, miR-5695, miR-6504, miR-1908, miR-6823, miR-3159, miR-23a, miR-7853, miR-496, and miR-193a. Interestingly, in the validation stage with real-time PCR, miR-24 was found downregulated in small and large AAAs compared with controls (fold-changes: 0.27, P = 0.015 and 0.15, P = 0.005, respectively). No correlation was found between average Ct values, aneurysm diameter, and patients' age. CONCLUSIONS: Our findings further highlight the importance of miR-24 as a potential biomarker as well as a therapeutic target for abdominal aneurysmal disease. Future research and validation of a panel of miRNAs for AAA would aid in diagnosis and discrimination between diseases with overlapping pathogeneses.


Asunto(s)
Aneurisma de la Aorta Abdominal , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Resultado del Tratamiento , Aneurisma de la Aorta Abdominal/diagnóstico por imagen , Aneurisma de la Aorta Abdominal/genética , Biomarcadores , Secuenciación de Nucleótidos de Alto Rendimiento
3.
Viruses ; 14(11)2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36423130

RESUMEN

Hepatitis C virus (HCV) core protein is a multifunctional protein that is involved in the proliferation, inflammation, and apoptosis mechanism of hepatocytes. HCV core protein genetic variability has been implicated in various outcomes of HCV pathology and treatment. In the present study, we aimed to analyze the role of the HCV core protein in tumor necrosis factor α (TNFα)-induced death under the viewpoint of HCV genetic variability. Immortalized hepatocytes (IHH), and not the Huh 7.5 hepatoma cell line, stably expressing HCV subtype 4a and HCV subtype 4f core proteins showed that only the HCV 4a core protein could increase sensitivity to TNFα-induced death. Development of two transgenic mice expressing the two different core proteins under the liver-specific promoter of transthyretin (TTR) allowed for the in vivo assessment of the role of the core in TNFα-induced death. Using the TNFα-dependent model of lipopolysaccharide/D-galactosamine (LPS/Dgal), we were able to recapitulate the in vitro results in IHH cells in vivo. Transgenic mice expressing the HCV 4a core protein were more susceptible to the LPS/Dgal model, while mice expressing the HCV 4f core protein had the same susceptibility as their littermate controls. Transcriptome analysis in liver biopsies from these transgenic mice gave insights into HCV core molecular pathogenesis while linking HCV core protein genetic variability to differential pathology in vivo.


Asunto(s)
Hepacivirus , Hepatitis C , Ratones , Animales , Hepacivirus/genética , Factor de Necrosis Tumoral alfa/metabolismo , Lipopolisacáridos/metabolismo , Hepatitis C/metabolismo , Hepatocitos , Genotipo , Ratones Transgénicos
4.
Trop Med Infect Dis ; 7(9)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36136647

RESUMEN

West Nile virus (WNV) is a mosquito-borne flavivirus that has emerged as a major cause of viral encephalitis and meningitis, rarely leading to death. Several risk factors have been discussed in the past concerning the severity of the disease, while few reports have focused on precipitating conditions that determine of WNV-related death. Studies on cohorts of patients suffering of West Nile disease (WND) usually encompass low numbers of deceased patients as a result of the rarity of the event. In this systematic review and critical analysis of 428 published case studies and case series, we sought to evaluate and highlight critical parameters of WND-related death. We summarized the symptoms, comorbidities, and treatment strategies related to WND in all published cases of patients that included clinical features. Symptoms such as altered mental status and renal problems presented increased incidence among deceased patients, while these patients presented increased cerebrospinal fluid (CSF) glucose. Our analysis also highlights underestimated comorbidities such as pulmonary disease to act as precipitating conditions in WND, as they were significantly increased amongst deceased patients. CSF glucose and the role of pulmonary diseases need to be revaluated either retrospectively or prospectively in WND patient cohorts, as they may be linked to increased mortality risk.

5.
Front Microbiol ; 13: 802577, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35330767

RESUMEN

Biting midges (Culicoides) are vectors of arboviruses of both veterinary and medical importance. The surge of emerging and reemerging vector-borne diseases and their expansion in geographical areas affected by climate change has increased the importance of understanding their capacity to contribute to novel and emerging infectious diseases. The study of Culicoides virome is the first step in the assessment of this potential. In this study, we analyzed the RNA virome of 10 Culicoides species within the geographical area of Thrace in the southeastern part of Europe, a crossing point between Asia and Europe and important path of various arboviruses, utilizing the Ion Torrent next-generation sequencing (NGS) platform and a custom bioinformatics pipeline based on TRINITY assembler and alignment algorithms. The analysis of the RNA virome of 10 Culicoides species resulted in the identification of the genomic signatures of 14 novel RNA viruses, including three fully assembled viruses and four segmented viruses with at least one segment fully assembled, most of which were significantly divergent from previously identified related viruses from the Solemoviridae, Phasmaviridae, Phenuiviridae, Reoviridae, Chuviridae, Partitiviridae, Orthomyxoviridae, Rhabdoviridae, and Flaviviridae families. Each Culicoides species carried a species-specific set of viruses, some of which are related to viruses from other insect vectors in the same area, contributing to the idea of a virus-carrier web within the ecosystem. The identified viruses not only expand our current knowledge on the virome of Culicoides but also set the basis of the genetic diversity of such viruses in the area of southeastern Europe. Furthermore, our study highlights that such metagenomic approaches should include as many species as possible of the local virus-carrier web that interact and share the virome of a geographical area.

6.
Transbound Emerg Dis ; 69(3): 1606-1616, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-33908152

RESUMEN

In the present study, the course of SARS-CoV-2 natural infection in two asymptomatic cats, which were negative for immunosuppressive retroviral infections, is investigated. The source of the virus for the cats was their COVID-19-affected owner, with whom they were in continuous proximity in a small household setting. The owner's signs included fatigue, sneezing, anosmia and loss of taste, and diagnosis was confirmed 4 days after symptom onset. Oropharyngeal and faecal swabs were collected from the cats, to investigate the course of SARS-CoV-2 RNA concentrations, as well as the directionality of the chain of virus transmission. Both infected cats were real-time RT-PCR-positive on various time-points. Pharyngeal shedding of at least 6 days was observed in them, with high SARS-CoV-2 titres (> 7 Log10 copies/swab) on the first sampling time-point, that is, 7 days after the onset of owner's clinical signs. In one cat, after the initial decline, slightly increasing virus titres were measured 3 to 6 days after the first real-time RT-PCR-positive swab. Serological testing of this cat revealed absence of seroconversion. The course of viral RNA concentrations in the faecal swabs of the other cat was similar to that in its pharynx. The detected SARS-CoV-2 strains, from both infected cats and their owner, underwent whole-genome sequencing, revealing the absence of emergence of cross-species adaptive mutations in cats. The results support the notion that human SARS-CoV-2 strains are relatively well-adapted to cats. It is still unclear whether asymptomatic animals could play a role in COVID-19 epidemiology, in case of interaction with naïve animals and/or people. Our findings highlight difficulties in SARS-CoV-2 transmission to cats, as neither the two infected cats nor their owner was able to transmit the virus to a third cat living in the same small flat, despite their very close contact during the days corresponding to high virus shedding.


Asunto(s)
COVID-19 , Enfermedades de los Gatos , Animales , COVID-19/veterinaria , Enfermedades de los Gatos/diagnóstico , Gatos , Humanos , Mutación , ARN Viral/genética , SARS-CoV-2/genética , Esparcimiento de Virus
7.
J Med Virol ; 93(5): 2899-2907, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33410223

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus responsible for the coronavirus disease 2019 (COVID-19) pandemic. Chains of infections starting from various countries worldwide seeded the outbreak of COVID-19 in Athens, capital city of Greece. A full-genome analysis of isolates from Athens' hospitals and other healthcare providers revealed the variety of SARS-CoV-2 that initiated the pandemic before lockdown and passenger flight restrictions. A dominant variant, encompassing the G614D amino acid substitution, spread through a major virus dispersal event, and sporadic introductions of rare variants characterized the local initiation of the epidemic. Mutations within the genome highlighted the genetic drift of the virus as rare variants emerged. An important variant contained a premature stop codon in orf7a leading to the truncation of a possibly important for viral pathogenesis domain. This study may serve as a reference for resolving future lines of infection in the area, especially after resumption of passenger flight connections to Athens and Greece during summer of 2020.


Asunto(s)
COVID-19/epidemiología , COVID-19/virología , Pandemias , SARS-CoV-2/genética , Biología Computacional , Variación Genética , Grecia/epidemiología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación , ARN Viral/análisis , SARS-CoV-2/aislamiento & purificación , Alineación de Secuencia , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...