Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Phytochemistry ; 194: 113044, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34864385

RESUMEN

Understanding brown planthopper (BPH) resistance mechanism will expedite selective breeding of better BPH resistant lines of rice (Oryza sativa). Metabolic responses during BPH infestation derived from wound stress imposed by insect feeding, comparing with mechanical piercing will provide an insight into resistance mechanism in rice. Therefore, this study aimed to compare the metabolic responses of needle piercing treatment and BPH feeding treatment in BPH-susceptible (KD) and BPH-resistant (RH) varieties at four different time points (0, 6, 24 and 96 h) using liquid chromatography-high resolution mass spectrometry (LC-HRMS). Phenotypes of RH were not different among the treatments, whereas KD exhibited hopperburn symptom at 96 h post-BPH infestation. Principal component and cluster analyses revealed that metabolite profiles between KD and RH were different in response to both insect and mechanical stimuli. Metabolite profiles of RH under BPH and mechanical treatments at 24 and 96 h were different from the untreated, whereas metabolite profiles of KD after BPH infestation at 24 and 96 h were distinct from needle piercing and no treatment, suggesting that the resistant variety has an ability to adapt and defend both mechanical and insect stimuli. Metabolomics result showed that BPH infestation perturbed purine salvage biosynthesis (e.g., inosine, hypoxanthine) in both varieties, amino acid biosynthesis (e.g., phenylalanine, tryptophan) in KD, while the infestation perturbed lysine metabolism (pipecolic acid) and phenylpropanoid pathway (2-anisic acid) only in RH. BPH and mechanical stimuli perturbed phenylamide only in RH, but not in KD. These findings revealed that different rice varieties utilize different metabolites in response to insect and mechanical stimuli, resulting in different degrees of resistance.


Asunto(s)
Hemípteros , Oryza , Animales , Metabolómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA