Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(17): e37286, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39296020

RESUMEN

Path planning for multiple unmanned aerial vehicles (UAVs) is crucial in collaborative operations and is commonly regarded as a complicated, multi-objective optimization problem. However, traditional approaches have difficulty balancing convergence and diversity, as well as effectively handling constraints. In this study, a directional evolutionary non-dominated sorting dung beetle optimizer with adaptive stochastic ranking (DENSDBO-ASR) is developed to address these issues in collaborative multi-UAV path planning. Two objectives are initially formulated: the first one represents the total cost of length and altitude, while the second represents the total cost of threat and time. Additionally, an improved multi-objective dung beetle optimizer is introduced, which integrates a directional evolutionary strategy including directional mutation and crossover, thereby accelerating convergence and enhancing global search capability. Furthermore, an adaptive stochastic ranking mechanism is proposed to successfully handle different constraints by dynamically adjusting the comparison probability. The effectiveness and superiority of DENSDBO-ASR are demonstrated by the constrained problem functions (CF) test, the Wilcoxon rank sum test, and the Friedman test. Finally, three sets of simulated tests are carried out, each including different numbers of UAVs. In the most challenging scenario, DENSDBO-ASR successfully identifies feasible paths with average values of the two objective functions as low as 637.26 and 0. The comparative results demonstrate that DENSDBO-ASR outperforms the other five algorithms in terms of convergence accuracy and population diversity, making it an exceptional optimization approach to path planning challenges.

2.
Free Radic Biol Med ; 190: 216-225, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35970250

RESUMEN

Iron accumulates in the brain with age and catalyzes free radical damage to neurons, thus playing a pathogenic role in Alzheimer's disease (AD). To decrease the incidence of AD, we synthesized the iron-affinitive peptide 5YHEDA to scavenge the excess iron in the senile brain. However, the blood-brain barrier (BBB) blocks the entrance of macromolecules into the brain, thus decreasing the therapeutic effects. To facilitate the entrance of the 5YHEDA peptide, we linked the low-density lipoprotein receptor (LDLR)-binding segment of ApoB-100 to 5YHEDA (named "bs-YHEDA"). The results of intravenous injections of bs-5YHEDA into senescent mice demonstrated that bs-YHEDA entered the brain, increased ferriportin levels, reduced iron and free radical levels, decreased the consequences of neuronal necrosis and ameliorated cognitive disfunction without kidney or liver damage. bs-5YHEDA is a safe iron and free radical remover that potentially alleviates aging and Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Envejecimiento , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Radicales Libres , Inteligencia , Hierro/uso terapéutico , Ratones , Péptidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA