Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
1.
Gastroenterol Hepatol ; : 502207, 2024 May 07.
Artículo en Inglés, Español | MEDLINE | ID: mdl-38723772

RESUMEN

This is the summary report of the 5th Translational Hepatology Meeting, endorsed by the Spanish Association for the Study of the Liver (AEEH) and held in Seville, Spain, in October 2023. The meeting aimed to provide an update on the latest advances in the field of basic and translational hepatology, covering different molecular, cellular, and pathophysiological aspects of the most relevant clinical challenges in liver pathologies. This includes the identification of novel biomarkers and diagnostic tools, the understanding of the relevance of immune response and inflammation in liver diseases, the characterization of current medical approaches to reverse liver diseases, the incorporation of novel molecular insights through omics techniques, or the characterization of the impact of toxic and metabolic insults, as well as other organ crosstalk, in liver pathophysiology.

2.
J Gastroenterol ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38619600

RESUMEN

BACKGROUND: MASLD can manifest as hepatocellular damage, which can result in mild elevation of aminotransferases. However, in some patients, MASLD presents with cholestatic pattern. OBJECTIVE: To assess the impact of the biochemical pattern on the natural course of MASLD, including liver damage in histology, the accuracy of non-invasive tests(NITs), and prognosis. METHODS: Multicenter study enrolling 2156 patients with biopsy-proven MASLD, who were classified based on their[ALT/ULN)]/[(ALP/ULN)] levels at the time of biopsy: (a) hepatocellular pattern(H), > 5; (b) mixed pattern(M),2-5; (c) cholestatic pattern(C), < 2. OUTCOMES: (a) histological evaluation of the single components of NAS, MASH, and fibrosis; (b) NITs and transient elastography assessing advanced fibrosis; (c) prognosis determined by the appearance of decompensated cirrhosis and death. RESULTS: Out of the 2156 patients, 22.9% exhibited the H-pattern, whilst 31.7% exhibited the C-pattern. Severe steatosis, ballooning, lobular inflammation, and MASH (56.4% H vs. 41.9% M vs. 31.9% C) were more common in H-pattern (p = 0.0001),whilst C-pattern was linked to cirrhosis (5.8% H vs. 5.6% M vs. 10.9% C; p = 0.0001). FIB-4(0.74(95% CI 0.69-0.79) vs. 0.83 (95% CI 0.80-0.85); p = 0.005) and Hepamet Fibrosis Score(0.77 (95% CI 0.69-0.85) vs. 0.84 (95% CI 0.80-0.87); p = 0.044)exhibited lower AUROCs in the H-pattern. The C-pattern[HR 2.37 (95% CI 1.12-5.02); p = 0.024], along with age, diabetes, and cirrhosis were independently associated with mortality. Most patients maintained their initial biochemical pattern during the second evaluation. CONCLUSIONS: The H-pattern exhibited greater necro-inflammation in the histology than the C-pattern, whereas the latter showed more cirrhosis. The accuracy of NITs in detecting fibrosis was decreased in H-pattern. The occurrence of decompensated events and mortality was predominant in C-pattern. Therefore, identifying MASLD phenotypes based on the biochemical presentation could be relevant for clinical practice.

3.
Cell Rep ; 43(3): 113924, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38507413

RESUMEN

The posttranslational modification of proteins critically influences many biological processes and is a key mechanism that regulates the function of the RNA-binding protein Hu antigen R (HuR), a hub in liver cancer. Here, we show that HuR is SUMOylated in the tumor sections of patients with hepatocellular carcinoma in contrast to the surrounding tissue, as well as in human cell line and mouse models of the disease. SUMOylation of HuR promotes major cancer hallmarks, namely proliferation and invasion, whereas the absence of HuR SUMOylation results in a senescent phenotype with dysfunctional mitochondria and endoplasmic reticulum. Mechanistically, SUMOylation induces a structural rearrangement of the RNA recognition motifs that modulates HuR binding affinity to its target RNAs, further modifying the transcriptomic profile toward hepatic tumor progression. Overall, SUMOylation constitutes a mechanism of HuR regulation that could be potentially exploited as a therapeutic strategy for liver cancer.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Humanos , Ratones , Carcinoma Hepatocelular/metabolismo , Modelos Animales de Enfermedad , Proteína 1 Similar a ELAV/metabolismo , Neoplasias Hepáticas/patología , ARN/metabolismo , Sumoilación
4.
EMBO Rep ; 25(3): 1022-1054, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38332153

RESUMEN

Cholangiocarcinoma is a devastating liver cancer characterized by high aggressiveness and therapy resistance, resulting in poor prognosis. Long non-coding RNAs and signals imposed by oncogenic pathways, such as transforming growth factor ß (TGFß), frequently contribute to cholangiocarcinogenesis. Here, we explore novel effectors of TGFß signalling in cholangiocarcinoma. LINC00313 is identified as a novel TGFß target gene. Gene expression and genome-wide chromatin accessibility profiling reveal that nuclear LINC00313 transcriptionally regulates genes involved in Wnt signalling, such as the transcriptional activator TCF7. LINC00313 gain-of-function enhances TCF/LEF-dependent transcription, promotes colony formation in vitro and accelerates tumour growth in vivo. Genes affected by LINC00313 over-expression in CCA tumours are associated with KRAS and TP53 mutations and reduce overall patient survival. Mechanistically, ACTL6A and BRG1, subunits of the SWI/SNF chromatin remodelling complex, interact with LINC00313 and affect TCF7 and SULF2 transcription. We propose a model whereby TGFß induces LINC00313 in order to regulate the expression of hallmark Wnt pathway genes, in co-operation with SWI/SNF. By modulating key genes of the Wnt pathway, LINC00313 fine-tunes Wnt/TCF/LEF-dependent transcriptional responses and promotes cholangiocarcinogenesis.


Asunto(s)
Colangiocarcinoma , ARN Largo no Codificante , Humanos , Vía de Señalización Wnt , ARN Largo no Codificante/genética , Factor de Crecimiento Transformador beta/metabolismo , Factores de Transcripción/metabolismo , Actinas/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo
5.
Cell Mol Gastroenterol Hepatol ; 17(6): 887-906, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38311169

RESUMEN

BACKGROUND & AIMS: Hepatic fibrosis is characterized by enhanced deposition of extracellular matrix (ECM), which results from the wound healing response to chronic, repeated injury of any etiology. Upon injury, hepatic stellate cells (HSCs) activate and secrete ECM proteins, forming scar tissue, which leads to liver dysfunction. Monocyte-chemoattractant protein-induced protein 1 (MCPIP1) possesses anti-inflammatory activity, and its overexpression reduces liver injury in septic mice. In addition, mice with liver-specific deletion of Zc3h12a develop features of primary biliary cholangitis. In this study, we investigated the role of MCPIP1 in liver fibrosis and HSC activation. METHODS: We analyzed MCPIP1 levels in patients' fibrotic livers and hepatic cells isolated from fibrotic murine livers. In vitro experiments were conducted on primary HSCs, cholangiocytes, hepatocytes, and LX-2 cells with MCPIP1 overexpression or silencing. RESULTS: MCPIP1 levels are induced in patients' fibrotic livers compared with their nonfibrotic counterparts. Murine models of fibrosis revealed that its level is increased in HSCs and hepatocytes. Moreover, hepatocytes with Mcpip1 deletion trigger HSC activation via the release of connective tissue growth factor. Overexpression of MCPIP1 in LX-2 cells inhibits their activation through the regulation of TGFB1 expression, and this phenotype is reversed upon MCPIP1 silencing. CONCLUSIONS: We demonstrated that MCPIP1 is induced in human fibrotic livers and regulates the activation of HSCs in both autocrine and paracrine manners. Our results indicate that MCPIP1 could have a potential role in the development of liver fibrosis.


Asunto(s)
Comunicación Autocrina , Células Estrelladas Hepáticas , Cirrosis Hepática , Comunicación Paracrina , Ribonucleasas , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Animales , Humanos , Cirrosis Hepática/patología , Cirrosis Hepática/metabolismo , Ratones , Ribonucleasas/metabolismo , Ribonucleasas/genética , Masculino , Modelos Animales de Enfermedad , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Hepatocitos/metabolismo , Hepatocitos/patología , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Factor de Crecimiento del Tejido Conjuntivo/genética , Hígado/patología , Hígado/metabolismo
6.
JHEP Rep ; 6(1): 100918, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38192540

RESUMEN

Background & Aims: Current therapies for the treatment of alcohol-related liver disease (ALD) have proven largely ineffective. Patients relapse and the disease progresses even after liver transplantation. Altered epigenetic mechanisms are characteristic of alcohol metabolism given excessive acetate and NAD depletion and play an important role in liver injury. In this regard, novel therapeutic approaches based on epigenetic modulators are increasingly proposed. MicroRNAs, epigenetic modulators acting at the post-transcriptional level, appear to be promising new targets for the treatment of ALD. Methods: MiR-873-5p levels were measured in 23 liver tissue from Patients with ALD, and GNMT levels during ALD were confirmed using expression databases (transcriptome n = 62, proteome n = 68). High-resolution proteomics and metabolomics in mice following the Gao-binge model were used to investigate miR-873-5p expression in ALD. Hepatocytes exposed to 50 mM alcohol for 12 h were used to study toxicity. The effect of anti-miR-873-5p in the treatment outcomes of ALD was investigated. Results: The analysis of human and preclinical ALD samples revealed increased expression of miR-873-5p in the liver. Interestingly, there was an inverse correlation with NNMT, suggesting a novel mechanism for NAD depletion and aberrant acetylation during ALD progression. High-resolution proteomics and metabolomics identified miR-873-5p as a key regulator of NAD metabolism and SIRT1 deacetylase activity. Anti-miR-873-5p reduced NNMT activity, fuelled the NAD salvage pathway, restored the acetylome, and modulated the levels of NF-κB and FXR, two known SIRT1 substrates, thereby protecting the liver from apoptotic and inflammatory processes, and improving bile acid homeostasis. Conclusions: These data indicate that targeting miR-873-5p, a repressor of GNMT previously associated with NAFLD and acetaminophen-induced liver failure. is a novel and attractive approach to treating alcohol-induced hepatoxicity. Impact and implications: The role of miR-873-5p has not been explicitly examined in the progression of ALD, a pathology with no therapeutic options. In this study, inhibiting miR-873-5p exerted hepatoprotective effects against ALD through rescued SIRT1 activity and consequently restored bile acid homeostasis and attenuated the inflammatory response. Targeting hepatic miR-873-5p may represent a novel therapeutic approach for the treatment of ALD.

7.
Hepatology ; 79(1): 135-148, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37505221

RESUMEN

BACKGROUND: Early identification of those with NAFLD activity score ≥ 4 and significant fibrosis (≥F2) or at-risk metabolic dysfunction-associated steatohepatitis (MASH) is a priority as these patients are at increased risk for disease progression and may benefit from therapies. We developed and validated a highly specific metabolomics-driven score to identify at-risk MASH. METHODS: We included derivation (n = 790) and validation (n = 565) cohorts from international tertiary centers. Patients underwent laboratory assessment and liver biopsy for metabolic dysfunction-associated steatotic liver disease. Based on 12 lipids, body mass index, aspartate aminotransferase, and alanine aminotransferase, the MASEF score was developed to identify at-risk MASH and compared to the FibroScan-AST (FAST) score. We further compared the performance of a FIB-4 + MASEF algorithm to that of FIB-4 + liver stiffness measurements (LSM) by vibration-controlled transient elastography (VCTE). RESULTS: The diagnostic performance of the MASEF score showed an area under the receiver-operating characteristic curve, sensitivity, specificity, and positive and negative predictive values of 0.76 (95% CI 0.72-0.79), 0.69, 0.74, 0.53, and 0.85 in the derivation cohort, and 0.79 (95% CI 0.75-0.83), 0.78, 0.65, 0.48, and 0.88 in the validation cohort, while FibroScan-AST performance in the validation cohort was 0.74 (95% CI 0.68-0.79; p = 0.064), 0.58, 0.79, 0.67, and 0.73, respectively. FIB-4+MASEF showed similar overall performance compared with FIB-4 + LSM by VCTE ( p = 0.69) to identify at-risk MASH. CONCLUSION: MASEF is a promising diagnostic tool for the assessment of at-risk MASH. It could be used alternatively to LSM by VCTE in the algorithm that is currently recommended by several guidance publications.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Enfermedad del Hígado Graso no Alcohólico , Humanos , Hígado/diagnóstico por imagen , Hígado/patología , Cirrosis Hepática/patología , Enfermedad del Hígado Graso no Alcohólico/patología , Fibrosis , Valor Predictivo de las Pruebas , Biopsia/efectos adversos
8.
Hepatology ; 79(2): 269-288, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37535809

RESUMEN

BACKGROUND AND AIMS: Primary sclerosing cholangitis (PSC) is an immune-mediated cholestatic liver disease for which pharmacological treatment options are currently unavailable. PSC is strongly associated with colitis and a disruption of the gut-liver axis, and macrophages are involved in the pathogenesis of PSC. However, how gut-liver interactions and specific macrophage populations contribute to PSC is incompletely understood. APPROACH AND RESULTS: We investigated the impact of cholestasis and colitis on the hepatic and colonic microenvironment, and performed an in-depth characterization of hepatic macrophage dynamics and function in models of concomitant cholangitis and colitis. Cholestasis-induced fibrosis was characterized by depletion of resident KCs, and enrichment of monocytes and monocyte-derived macrophages (MoMFs) in the liver. These MoMFs highly express triggering-receptor-expressed-on-myeloid-cells-2 ( Trem2 ) and osteopontin ( Spp1 ), markers assigned to hepatic bile duct-associated macrophages, and were enriched around the portal triad, which was confirmed in human PSC. Colitis induced monocyte/macrophage infiltration in the gut and liver, and enhanced cholestasis-induced MoMF- Trem2 and Spp1 upregulation, yet did not exacerbate liver fibrosis. Bone marrow chimeras showed that knockout of Spp1 in infiltrated MoMFs exacerbates inflammation in vivo and in vitro , while monoclonal antibody-mediated neutralization of SPP1 conferred protection in experimental PSC. In human PSC patients, serum osteopontin levels are elevated compared to control, and significantly increased in advanced stage PSC and might serve as a prognostic biomarker for liver transplant-free survival. CONCLUSIONS: Our data shed light on gut-liver axis perturbations and macrophage dynamics and function in PSC and highlight SPP1/OPN as a prognostic marker and future therapeutic target in PSC.


Asunto(s)
Colangitis Esclerosante , Colestasis , Colitis , Humanos , Colangitis Esclerosante/patología , Osteopontina , Cirrosis Hepática/patología , Conductos Biliares/patología , Colestasis/patología , Macrófagos/patología
9.
Gastroenterology ; 166(5): 886-901.e7, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38096955

RESUMEN

BACKGROUND & AIMS: Metabolic and transcriptional programs respond to extracellular matrix-derived cues in complex environments, such as the tumor microenvironment. Here, we demonstrate how lysyl oxidase (LOX), a known factor in collagen crosslinking, contributes to the development and progression of cholangiocarcinoma (CCA). METHODS: Transcriptomes of 209 human CCA tumors, 143 surrounding tissues, and single-cell data from 30 patients were analyzed. The recombinant protein and a small molecule inhibitor of the LOX activity were used on primary patient-derived CCA cultures to establish the role of LOX in migration, proliferation, colony formation, metabolic fitness, and the LOX interactome. The oncogenic role of LOX was further investigated by RNAscope and in vivo using the AKT/NICD genetically engineered murine CCA model. RESULTS: We traced LOX expression to hepatic stellate cells and specifically hepatic stellate cell-derived inflammatory cancer-associated fibroblasts and found that cancer-associated fibroblast-driven LOX increases oxidative phosphorylation and metabolic fitness of CCA, and regulates mitochondrial function through transcription factor A, mitochondrial. Inhibiting LOX activity in vivo impedes CCA development and progression. Our work highlights that LOX alters tumor microenvironment-directed transcriptional reprogramming of CCA cells by facilitating the expression of the oxidative phosphorylation pathway and by increasing stemness and mobility. CONCLUSIONS: Increased LOX is driven by stromal inflammatory cancer-associated fibroblasts and correlates with diminished survival of patients with CCA. Modulating the LOX activity can serve as a novel tumor microenvironment-directed therapeutic strategy in bile duct pathologies.


Asunto(s)
Neoplasias de los Conductos Biliares , Fibroblastos Asociados al Cáncer , Colangiocarcinoma , Células Estrelladas Hepáticas , Proteína-Lisina 6-Oxidasa , Microambiente Tumoral , Humanos , Neoplasias de los Conductos Biliares/patología , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/enzimología , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Fibroblastos Asociados al Cáncer/enzimología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Colangiocarcinoma/patología , Colangiocarcinoma/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/enzimología , Regulación Neoplásica de la Expresión Génica , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Células Estrelladas Hepáticas/enzimología , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/enzimología , Fosforilación Oxidativa , Proteína-Lisina 6-Oxidasa/metabolismo , Proteína-Lisina 6-Oxidasa/genética , Transducción de Señal
10.
Cancers (Basel) ; 15(20)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37894344

RESUMEN

Hepatocellular carcinoma (HCC) is a prevalent and aggressive cancer that comprises a complex tumour microenvironment (TME). Tumour-associated macrophages (TAMs) are one of the most abundant immune cells present in the TME, and play a key role both in the development and in the progression of HCC. Thus, TAM-based immunotherapy has been presented as a promising strategy to complement the currently available therapies for HCC treatment. Among the novel approaches focusing on TAMs, reprogramming their functional state has emerged as a promising option for targeting TAMs as an immunotherapy in combination with the currently available treatment options. Nevertheless, a further understanding of the immunobiology of TAMs is still required. This review synthesizes current insights into the heterogeneous nature of TAMs in HCC and describes the mechanisms behind their pro-tumoural polarization focusing the attention on their interaction with HCC cells. Furthermore, this review underscores the potential involvement of TAMs' reprogramming in HCC therapy and highlights the urgency of advancing our understanding of these cells within the dynamic landscape of HCC.

11.
FASEB J ; 37(11): e23220, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37801035

RESUMEN

Patients with cystic fibrosis (CF) exhibit pronounced respiratory damage and were initially considered among those at highest risk for serious harm from SARS-CoV-2 infection. Numerous clinical studies have subsequently reported that individuals with CF in North America and Europe-while susceptible to severe COVID-19-are often spared from the highest levels of virus-associated mortality. To understand features that might influence COVID-19 among patients with cystic fibrosis, we studied relationships between SARS-CoV-2 and the gene responsible for CF (i.e., the cystic fibrosis transmembrane conductance regulator, CFTR). In contrast to previous reports, we found no association between CFTR carrier status (mutation heterozygosity) and more severe COVID-19 clinical outcomes. We did observe an unexpected trend toward higher mortality among control individuals compared with silent carriers of the common F508del CFTR variant-a finding that will require further study. We next performed experiments to test the influence of homozygous CFTR deficiency on viral propagation and showed that SARS-CoV-2 production in primary airway cells was not altered by the absence of functional CFTR using two independent protocols. On the contrary, experiments performed in vitro strongly indicated that virus proliferation depended on features of the mucosal fluid layer known to be disrupted by absent CFTR in patients with CF, including both low pH and increased viscosity. These results point to the acidic, viscous, and mucus-obstructed airways in patients with cystic fibrosis as unfavorable for the establishment of coronaviral infection. Our findings provide new and important information concerning relationships between the CF clinical phenotype and severity of COVID-19.


Asunto(s)
COVID-19 , Fibrosis Quística , Humanos , Fibrosis Quística/complicaciones , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Mutación , Gravedad del Paciente , SARS-CoV-2
12.
Sci Transl Med ; 15(713): eabq5930, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37703354

RESUMEN

The formation of multiple cysts in the liver occurs in a number of isolated monogenic diseases or multisystemic syndromes, during which bile ducts develop into fluid-filled biliary cysts. For patients with polycystic liver disease (PCLD), nonsurgical treatments are limited, and managing life-long abdominal swelling, pain, and increasing risk of cyst rupture and infection is common. We demonstrate here that loss of the primary cilium on postnatal biliary epithelial cells (via the deletion of the cilia gene Wdr35) drives ongoing pathological remodeling of the biliary tree, resulting in progressive cyst formation and growth. The development of cystic tissue requires the activation of transforming growth factor-ß (TGFß) signaling, which promotes the expression of a procystic, fibronectin-rich extracellular matrix and which itself is perceived by a changing profile of integrin receptors on the cystic epithelium. This signaling axis is conserved in liver cysts from patients with either autosomal dominant polycystic kidney disease or autosomal dominant polycystic liver disease, indicating that there are common cellular mechanisms for liver cyst growth regardless of the underlying genetic cause. Cyst number and size can be reduced by inhibiting TGFß signaling or integrin signaling in vivo. We suggest that our findings represent a therapeutic route for patients with polycystic liver disease, most of whom would not be amenable to surgery.


Asunto(s)
Conductos Biliares , Quistes , Humanos , Matriz Extracelular , Integrinas
13.
Cells ; 12(16)2023 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-37626908

RESUMEN

BACKGROUND: Immunotherapy has recently been incorporated into the spectrum of biliary tract cancer (BTC) treatment. The identification of predictive response biomarkers is essential in order to identify those patients who may benefit most from this novel treatment option. Here, we propose a systematic literature review and a meta-analysis of PD-1, PD-L1, and other immune-related biomarker expression levels in patients with BTC. METHODS: Prisma guidelines were followed for this systematic review and meta-analysis. Eligible studies were searched on PubMed. Studies published between 2017 and 2022, reporting data on PD-1/PD-L1 expression and other immune-related biomarkers in patients with BTC, were considered eligible. RESULTS: A total of 61 eligible studies were identified. Despite the great heterogeneity between 39 studies reporting data on PD-L1 expression, we found a mean PD-L1 expression percentage (by choosing the lowest cut-off per study) of 25.6% (95% CI 21.0 to 30.3) in BTCs. The mean expression percentages of PD-L1 were 27.3%, 21.3%, and 27.4% in intrahepatic cholangiocarcinomas (iCCAs-15 studies), perihilar-distal CCAs (p/dCCAs-7 studies), and gallbladder cancer (GBC-5 studies), respectively. Furthermore, 4.6% (95% CI 2.38 to 6.97) and 2.5% (95% CI 1.75 to 3.34) of BTCs could be classified as TMB-H and MSI/MMRd tumors, respectively. CONCLUSION: From our analysis, PD-L1 expression was found to occur approximately in 26% of BTC patients, with minimal differences based on anatomical location. TMB-H and MSI molecular phenotypes occurred less frequently. We still lack a reliable biomarker, especially in patients with mismatch-proficient tumors, and we must need to make an effort to conceive new prospective biomarker discovery studies.


Asunto(s)
Neoplasias de los Conductos Biliares , Neoplasias del Sistema Biliar , Humanos , Antígeno B7-H1 , Receptor de Muerte Celular Programada 1 , Neoplasias del Sistema Biliar/terapia , Inmunoterapia , Biomarcadores , Conductos Biliares Intrahepáticos
14.
Liver Int ; 43(10): 2256-2274, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37534739

RESUMEN

BACKGROUND AND AIMS: The mechanisms governing the progression of non-alcoholic fatty liver disease (NAFLD) towards steatohepatitis (NASH) and hepatocellular carcinoma (HCC) remain elusive. Here, we evaluated the role of hsa-miRNA-21-5p in NASH-related hepatocarcinogenesis. METHODS: Hepatic hsa-miR-21-5p expression was evaluated in two cohorts of patients with biopsy-proven NAFLD (n = 199) or HCC (n = 366 HCC and n = 11 NAFLD-HCC). Serum/liver metabolomic profiles were correlated with hsa-miR-21-5p in NAFLD obese patients. Wild-type (WT) and Mir21 KO mice were fed a choline-deficient, amino acid-defined (CDAA) diet for 32 and 66 weeks to induce NASH and NASH-HCC, respectively. RESULTS: In obese individuals, hsa-miR-21-5p expression increased with NAFLD severity and associated with a hepatic lipotoxic profile. CDAA-fed WT mice displayed increased hepatic mmu-miR-21-5p levels and progressively developed NASH and fibrosis, with livers presenting macroscopically discernible pre-neoplastic nodules, hyperplastic foci and deregulated cancer-related pathways. Mir21 KO mice exhibited peroxisome-proliferator-activated receptor α (PPARα) activation, augmented mitochondrial activity, reduced liver injury and NAS below the threshold for NASH diagnosis, with the pro-inflammatory/fibrogenic milieu reversing to baseline levels. In parallel, Mir21 KO mice displayed reduced number of pre-neoplastic nodules, hepatocyte proliferation and activation of oncogenic signalling, being protected from NASH-associated carcinogenesis. The hsa-miRNA-21-5p/PPARα pathway was similarly deregulated in patients with HCC- or NASH-related HCC, correlating with HCC markers and worse prognosis. CONCLUSIONS: Hsa-miR-21-5p is a key inducer of whole-spectrum NAFLD progression, from simple steatosis to NASH and NASH-associated carcinogenesis. The inhibition of hsa-miR-21-5p, leading to a pro-metabolic profile, might constitute an appealing therapeutic approach to ameliorate NASH and prevent progression towards HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/patología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , PPAR alfa , Hígado/patología , Carcinogénesis/genética , Carcinogénesis/metabolismo , Carcinogénesis/patología , Obesidad/metabolismo , Colina/metabolismo , MicroARNs/genética , MicroARNs/metabolismo
15.
Hum Mol Genet ; 32(16): 2646-2655, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37369012

RESUMEN

Animal studies implicate one-carbon metabolism and DNA methylation genes in hepatocellular carcinoma (HCC) development in the setting of metabolic perturbations. Using human samples, we investigated the associations between common and rare variants in these closely related biochemical pathways and risk for metabolic HCC development in a multicenter international study. We performed targeted exome sequencing of 64 genes among 556 metabolic HCC cases and 643 cancer-free controls with metabolic conditions. Multivariable logistic regression was used to calculate odds ratios (ORs) and 95% confidence intervals (CIs), adjusting for multiple comparisons. Gene-burden tests were used for rare variant associations. Analyses were performed in the overall sample and among non-Hispanic whites. The results show that among non-Hispanic whites, presence of rare functional variants in ABCC2 was associated with 7-fold higher risk of metabolic HCC (OR = 6.92, 95% CI: 2.38-20.15, P = 0.0004), and this association remained significant when analyses were restricted to functional rare variants observed in ≥2 participants (cases 3.2% versus controls 0.0%, P = 1.02 × 10-5). In the overall multiethnic sample, presence of rare functional variants in ABCC2 was nominally associated with metabolic HCC (OR = 3.60, 95% CI: 1.52-8.58, P = 0.004), with similar nominal association when analyses were restricted to functional rare variants observed in ≥2 participants (cases 2.9% versus controls 0.2%, P = 0.006). A common variant in PNPLA3 (rs738409[G]) was associated with higher HCC risk in the overall sample (P = 6.36 × 10-6) and in non-Hispanic whites (P = 0.0002). Our findings indicate that rare functional variants in ABCC2 are associated with susceptibility to metabolic HCC in non-Hispanic whites. PNPLA3-rs738409 is also associated with metabolic HCC risk.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Metilación de ADN/genética , Predisposición Genética a la Enfermedad , Estudios de Casos y Controles , Células Germinativas/patología , Carbono , Polimorfismo de Nucleótido Simple/genética
16.
Sci Rep ; 13(1): 7766, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37173330

RESUMEN

Cholangiocarcinoma (CCA) is a rare cancer characterized by a global increasing incidence. Extracellular vesicles (EV) contribute to many of the hallmarks of cancer through transfer of their cargo molecules. The sphingolipid (SPL) profile of intrahepatic CCA (iCCA)-derived EVs was characterized by liquid chromatography-tandem mass spectrometry analysis. The effect of iCCA-derived EVs as mediators of inflammation was assessed on monocytes by flow cytometry. iCCA-derived EVs showed downregulation of all SPL species. Of note, poorly-differentiated iCCA-derived EVs showed a higher ceramide and dihydroceramide content compared with moderately-differentiated iCCA-derived EVs. Of note, higher dihydroceramide content was associated with vascular invasion. Cancer-derived EVs induced the release of pro-inflammatory cytokines in monocytes. Inhibition of synthesis of ceramide with Myriocin, a specific inhibitor of the serine palmitoyl transferase, reduced the pro-inflammatory activity of iCCA-derived EVs, demonstrating a role for ceramide as mediator of inflammation in iCCA. In conclusion, iCCA-derived EVs may promote iCCA progression by exporting the excess of pro-apoptotic and pro-inflammatory ceramides.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Vesículas Extracelulares , Humanos , Monocitos , Ceramidas/análisis , Inflamación , Colangiocarcinoma/patología , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/patología , Vesículas Extracelulares/química
17.
Rev Esp Enferm Dig ; 115(10): 542-545, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37114427

RESUMEN

Polycystic liver diseases (PLDs) comprise a heterogeneous group of congenital genetic disorders that mainly affect bile duct epithelial cells, known as cholangiocytes. Patients with PLD usually present bile duct dilatation and/or progressive develop intrahepatic, fluid-filled biliary cysts (more than 10), which is the main cause of morbidity.

18.
J Hepatol ; 79(1): 93-108, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36868481

RESUMEN

BACKGROUND & AIMS: Cholangiocarcinoma (CCA), heterogeneous biliary tumours with dismal prognosis, lacks accurate early diagnostic methods especially important for individuals at high-risk (i.e. those with primary sclerosing cholangitis [PSC]). Here, we searched for protein biomarkers in serum extracellular vesicles (EVs). METHODS: EVs from patients with isolated PSC (n = 45), concomitant PSC-CCA (n = 44), PSC who developed CCA during follow-up (PSC to CCA; n = 25), CCAs from non-PSC aetiology (n = 56), and hepatocellular carcinoma (n = 34) and healthy individuals (n = 56) were characterised by mass spectrometry. Diagnostic biomarkers for PSC-CCA, non-PSC CCA, or CCAs regardless of aetiology (Pan-CCAs) were defined and validated by ELISA. Their expression was evaluated in CCA tumours at a single-cell level. Prognostic EV biomarkers for CCA were investigated. RESULTS: High-throughput proteomics of EVs identified diagnostic biomarkers for PSC-CCA, non-PSC CCA, or Pan-CCA, and for the differential diagnosis of intrahepatic CCA and hepatocellular carcinoma, which were cross-validated by ELISA using total serum. Machine learning-based algorithms disclosed CRP/FIBRINOGEN/FRIL for the diagnosis of PSC-CCA (local disease [LD]) vs. isolated PSC (AUC = 0.947; odds ratio [OR] =36.9) and, combined with carbohydrate antigen 19-9, overpowers carbohydrate antigen 19-9 alone. CRP/PIGR/VWF allowed the diagnosis of LD non-PSC CCAs vs. healthy individuals (AUC = 0.992; OR = 387.5). It is noteworthy that CRP/FRIL accurately diagnosed LD Pan-CCA (AUC = 0.941; OR = 89.4). Levels of CRP/FIBRINOGEN/FRIL/PIGR showed predictive capacity for CCA development in PSC before clinical evidence of malignancy. Multi-organ transcriptomic analysis revealed that serum EV biomarkers were mostly expressed in hepatobiliary tissues, and single-cell RNA sequencing and immunofluorescence analysis of CCA tumours showed their presence mainly in malignant cholangiocytes. Multivariable analysis unveiled EV prognostic biomarkers, with COMP/GNAI2/CFAI and ACTN1/MYCT1/PF4V associated negatively and positively with patients' survival, respectively. CONCLUSIONS: Serum EVs contain protein biomarkers for the prediction, early diagnosis, and prognostication of CCA that are detectable using total serum, representing a tumour cell-derived liquid biopsy tool for personalised medicine. IMPACT AND IMPLICATIONS: The accuracy of current imaging tests and circulating tumour biomarkers for cholangiocarcinoma (CCA) diagnosis is far from satisfactory. Most CCAs are considered sporadic, although up to 20% of patients with primary sclerosing cholangitis (PSC) develop CCA during their lifetime, constituting a major cause of PSC-related death. This international study has proposed protein-based and aetiology-related logistic models with predictive, diagnostic, or prognostic capacities by combining two to four circulating protein biomarkers, moving a step forward into personalised medicine. These novel liquid biopsy tools may allow the (i) easy and non-invasive diagnosis of sporadic CCAs, (ii) identification of patients with PSC with higher risk for CCA development, (iii) establishment of cost-effective surveillance programmes for the early detection of CCA in high-risk populations (e.g. PSC), and (iv) prognostic stratification of patients with CCA, which, altogether, may increase the number of cases eligible for potentially curative options or to receive more successful treatments, decreasing CCA-related mortality.


Asunto(s)
Neoplasias de los Conductos Biliares , Carcinoma Hepatocelular , Colangiocarcinoma , Colangitis Esclerosante , Neoplasias Hepáticas , Humanos , Colangitis Esclerosante/complicaciones , Carcinoma Hepatocelular/etiología , Carcinoma Hepatocelular/complicaciones , Neoplasias de los Conductos Biliares/patología , Colangiocarcinoma/diagnóstico , Colangiocarcinoma/etiología , Colangiocarcinoma/metabolismo , Biomarcadores de Tumor , Diagnóstico Precoz , Biopsia Líquida , Conductos Biliares Intrahepáticos/patología , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/complicaciones , Carbohidratos , Proteínas Nucleares
20.
Cells ; 12(6)2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36980187

RESUMEN

Cholangiocarcinomas (CCAs) are aggressive tumors arising along the biliary tract epithelium, whose incidence and mortality are increasing. CCAs are highly desmoplastic cancers characterized by a dense tumor microenvironment (TME), in which each single component plays a fundamental role in shaping CCA initiation, progression and resistance to therapies. The crosstalk between cancer cells and TME can affect the recruitment, infiltration and differentiation of immune cells. According to the stage of the disease and to intra- and inter-patient heterogeneity, TME may contribute to either protumoral or antitumoral activities. Therefore, a better understanding of the effect of each immune cell subtype may open the path to new personalized immune therapeutic strategies for the management of CCA. In this review, we describe the role of immune cells in CCA initiation and progression, and their crosstalk with both cancer-associated fibroblasts (CAFs) and the cancer-stem-cell-like (CSC) niche.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Colangiocarcinoma/patología , Epitelio/patología , Conductos Biliares Intrahepáticos/patología , Neoplasias de los Conductos Biliares/patología , Biología , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...