Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Res ; 237(Pt 1): 116929, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37598839

RESUMEN

The accumulation of microbes especially in the air and in water bodies is causing the major disease outbreaks. Indoor environment remediation methods are necessary today to clean up these microbes. Among the remediation methods available, in situ generation of highly reactive and oxidizing radical species by advanced oxidation processes (AOPs) inactivate most of the microbes unselectively. Of these AOPs, photocatalytic microbial disinfection especially under indoor conditions is of great interest to maintain microbe-free indoor environment. For efficient microbes' inactivation under indoor conditions, the near IR and IR response of the photocatalysts must be improved. Though the photocatalytic disinfection of microbes using semiconductor-based photocatalysts has been extensively investigated, most of the photocatalysts that have been investigated are either weekly responsive or totally not irresponsive to IR photons due to inappropriate bandgap energies. Several strategies have been investigated to enhance the light harvesting properties of semiconductor based photocatalysts under indoor conditions and make them active to near IR and IR radiations. This review summarizes the recent progress in the field of materials for photocatalysts employed for microbial removal in indoor environments over the past decade as well as outlines key perspectives to enlighten future researches. The paper details the fundamentals of photocatalysis and basic properties of photocatalytic materials in the disinfection of common microbes under indoor conditions. The applications of photocatalytic materials in the disinfection of microbes in indoor environmental conditions are discussed and reviewed. Finally, the remaining challenges and future strategies/prospects in the design and synthesis of IR (and near IR) responsive photocatalysts are discussed.

2.
Ultrason Sonochem ; 45: 279-285, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29705322

RESUMEN

Dielectric oxide materials are well-known insulators that have many applications in catalysis as well as in device manufacturing industries. However, these dielectric materials cannot be employed directly in photochemical reactions that are initiated by the absorption of UV-Vis photons. Despite their insensitivity to solar energy, dielectric materials can be made sono-photoactive even for low energy IR photons by modifications of the interfacial properties of dielectric materials by noble metals and metal oxides. In this investigation, by way of interface modification of dielectric MgO nanoparticles by Ag metal and Ag2O nanoparticles, IR photon initiated sono-photocatalytic activity of MgO is reported. The observed photocatalytic activity is found to be the synergic action of both IR light and sonication effect and sonication assisted a multi-step, sub-bandgap excitation of electrons in the MgO is proposed for the observed catalytic activity of Ag/Ag2O coated MgO nanoparticles. Our investigation reveals that other dielectric materials such as silver coated SiO2 and Al2O3 also exhibit IR active sono-photocatalytic activity.

3.
Sci Rep ; 7: 42516, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28195172

RESUMEN

Despite WHO standards, waterborne diseases among the human being are rising alarmingly. It is known that the prolong exposure to contaminated water has major impact on public health. The effect of chemical contaminations in drinking water on human being is found to be chronic rather than acute and hence can be defined "consumption of contaminated drinking water could be a silent killer". As the WHO recommended water quality standards are only for individual element and synergic effects of trace metals and anions have not been considered, investigation of synergic effects of trace metals and anions and their effect on human being is of prime important research. By an animal trial, we investigated the synergic effect(s) of heavy metals, aluminium, arsenic, fluoride and hardness in drinking water on kidney tissues of mice. Our investigation strongly suggests existing of a synergic effect especially among Cd, F and hardness of water which could lead to severe kidney damage in mice, even at WHO maximum recommended levels. Hence, the synergic effect(s) of trace metals, fluoride and hardness present in drinking water should be investigated meticulously when stipulating the water quality at WHO maximum recommended levels.


Asunto(s)
Agua Potable/análisis , Agua Potable/química , Fluoruros/análisis , Riñón/efectos de los fármacos , Metales Pesados/análisis , Contaminantes Químicos del Agua/análisis , Calidad del Agua , Animales , Agua Potable/normas , Exposición a Riesgos Ambientales/efectos adversos , Femenino , Fluoruros/efectos adversos , Riñón/patología , Metales Pesados/efectos adversos , Ratones , Insuficiencia Renal Crónica/etiología , Insuficiencia Renal Crónica/patología , Contaminantes Químicos del Agua/efectos adversos , Organización Mundial de la Salud
4.
J Environ Manage ; 191: 96-104, 2017 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-28088726

RESUMEN

For the effective oil/water separation, a novel superhydrophilic (underwater superoleophobic) filter is fabricated with the naturally and hydrothermally treated mica particles. To fabricate a double layered filter, hydrothermally treated mica particles were initially electrodeposited on a stainless steel mesh and a natural mica particles were sprayed on the first hydrothermally deposited mica layer. The double layered mica coated membrane showed superamphiphilic and superhydrophilic/superoleophobic (contact angle >159°) characteristics in air and underwater respectively. The membrane can separate range of oil-water mixtures with oil/water separation efficiency over ∼99%. Properties of double layered mica membrane were investigated and noted that the surface adhesion properties of mica is enhanced by the hydrothermal treatment of mica and the higher roughness of the mica layer is maintained by the natural mica.


Asunto(s)
Aceites , Aguas Residuales , Interacciones Hidrofóbicas e Hidrofílicas , Nanopartículas , Propiedades de Superficie
5.
ACS Omega ; 2(8): 4982-4990, 2017 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-31457775

RESUMEN

Sensitizing titania with semiconducting quantum dots (QDs) is an important field for the development of third-generation photovoltaics. Many methods have been developed to effectively incorporate QDs over the surface of mesoporous titania, assembled from the 20-25 nm titania nanoparticles. Here, we introduce a molten-salt-assisted self-assembly (MASA) method to fabricate CdSe-modified mesoporous titania photoanodes. A mixture of ethanol, two surfactants (cetyltrimethylammonium bromide and 10-lauryl ether), silica (tetramethyl orthosilicate) or titania source (Ti(OC4H9)4, acid (HNO3), and cadmium nitrate solution was infiltrated into the pores of mesoporous titania (assembled using Degussa 25, P25) and immediately calcined at 450 °C to obtain mesoporous cadmium oxide-silica-titania (meso-CdO-SiO2-P25) or cadmium titanate-titania (meso-CdTiO3-P25) films. The MASA process is a simple method to smoothly coat or fill the pores of titania with mesoporous CdO-SiO2 or CdTiO3 that can be reacted under an H2Se atmosphere to convert cadmium species to CdSe at 100 °C. Etching of the silica films with a very dilute hydrogen fluoride solution produces mesoporous CdSe-titania (meso-CdSe-P25) electrodes. The method is flexible to adjust the CdSe/TiO2 mole ratio over a very broad range in the films. The films were characterized at every stage of the preparation to demonstrate the effectiveness of the method. The electrodes were also tested in a simple two-electrode solar cell to demonstrate the performance of the electrodes that have a power conversion efficiency of 3.35%.

6.
Chemosphere ; 171: 134-141, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28013074

RESUMEN

In this report, we investigated the TiO2 nanofibers coated stainless steel mesh as a novel underwater superoleophobic membrane for the effective separation of contaminated oil-water mixtures. The membrane was fabricated by spray deposition of hydrothermally synthesized TiO2 nanofibers on stainless steel mesh. The fabricated membrane exhibits superhydrophilicity and supereleophobicity properties in air and underwater respectively allowing the separation of oil-water efficiently. Randomly deposited TiO2 nanofibers on mesh exhibit rough surface property and hence superhydrophilic nature. Water oil separation efficiencies of ∼90 and ∼99% were achieved with this filter for less viscous and highly viscous oil respectively. Additionally, the TiO2 nanofibers coated mesh can degrade immiscible organic molecules due to photocatalytic activity of TiO2 nanofibers under UV light. As a result of self-cleaning property of TiO2 nanofibers coated mesh, the durability of the filter membrane is enhanced.


Asunto(s)
Nanofibras/química , Aceites/química , Titanio/química , Contaminantes Químicos del Agua/química , Interacciones Hidrofóbicas e Hidrofílicas , Acero Inoxidable/química , Propiedades de Superficie , Purificación del Agua/métodos
7.
Environ Geochem Health ; 38(1): 157-68, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25859936

RESUMEN

High prevalence of chronic kidney disease of unknown etiology (CKDu) in some regions of the world is suspected mainly due to a toxin-mediated renal failure. We examined the incidence of CKDu and potable chemical water quality in a CKDu-affected region. This region has been identified as a high-risk zone for CKDu (location: latitude: 8.3500°-9.0000°, longitude: 80.3833°-81.3000°, North Central Province, NCP, Sri Lanka) by the World Health Organization (WHO). However, within this macro-region, small pockets of CKDu non-prevalence zones do exist; notably, the residents in those pockets consume spring water. Therefore, the drinking water quality of four areas, namely high-CKDu-prevalence areas (zone I), low-CKDu-prevalence area (zone II), the CKDu-free isolated pockets (zone III) and control areas (controls) were examined for F, Al, Cd, and As, and hardness and the statistical analysis were carried out to probe possible correlations among these parameters. The fluoride and hardness concentrations of water in zone III and control areas are much lower compared to zones I and II, and the water hardness is ~61 mg/L CaCO3. In zones I and II, the harness of drinking water is ~121-180 mg/L CaCO3; however, Al, Cd and As concentrations are almost comparable and below WHO recommendations. In most of the locations in zones I and II, the F concentration in drinking water is higher than the WHO recommendations. The peculiar distribution patterns of CKDu point to a synergic effect of trace elements in water for etiology of the disease.


Asunto(s)
Agua Potable/análisis , Exposición a Riesgos Ambientales , Insuficiencia Renal Crónica/epidemiología , Contaminantes Químicos del Agua/análisis , Calidad del Agua , Agua/química , Cadmio/análisis , Fluoruros/análisis , Humanos , Incidencia , Insuficiencia Renal Crónica/etiología , Sri Lanka/epidemiología
8.
Environ Sci Pollut Res Int ; 22(14): 11001-9, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25787218

RESUMEN

It is suspected that drinking water containing fluoride and aluminum results in negative health effects especially on brain, liver, and kidney. In this investigation, the effect of F, Al, and AlFx complex on chronic kidney disease (CKD) was investigated. Mice were treated either with WHO recommended or slightly higher F and Al levels in drinking water. Treatment solutions contained 0.05-10.0 mg/L of F, 0.08-10.0 mg/L of Al, or 0.07-15 mg/L of AlFx, and the treatment period was 42 weeks. Blood urea level and creatinine levels were investigated as a measure of malfunction of kidneys. Histopathological evaluations of kidney tissues were carried out to assess the extent of damage that F, Al, and AlFx complex could cause. It was demonstrated that the treated drinking water containing F and Al with par with WHO or moderately above the WHO levels or AlFx in low level (0.07-15 mg/L) does not lead to CKD in mice.


Asunto(s)
Compuestos de Aluminio/toxicidad , Aluminio/toxicidad , Fluoruros/toxicidad , Riñón/efectos de los fármacos , Aluminio/farmacocinética , Compuestos de Aluminio/farmacocinética , Animales , Creatinina/sangre , Agua Potable , Femenino , Fluoruros/farmacocinética , Riñón/metabolismo , Ratones Endogámicos ICR , Insuficiencia Renal Crónica , Urea/sangre , Purificación del Agua
9.
Phys Chem Chem Phys ; 13(28): 12906-11, 2011 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-21695348

RESUMEN

A new technologically relevant method for multichromophore sensitizing of hybrid blend solar cells is presented. Two dyes having complementary absorption in the UV-visible regions are individually adsorbed on nanocrystalline TiO(2) powder. These dyed TiO(2) nanoparticles are blended with an organic hole-conductor (HC) Spiro-OMeTAD in desired compositions and applied on a conducting substrate by doctor-blading at room temperature to fabricate multichromophore-sensitized hybrid blend solar cells. The external quantum efficiency (EQE) of the single hybrid layer system fabricated with two dyes, that absorb mainly UV (TPD dye) and visible regions (Ru-TPA-NCS dye), exhibited a clear panchromatic response with the sum of the EQE characteristics of each single dye cell. The first results of a multichromophore-sensitized solid-state solar cell showed J(sc) of 2.1 mA cm(-2), V(oc) of 645 mV, FF of 47% and efficiency of 0.65% at AM 1.5 G, 100 mW cm(-2) illumination intensity. The J(sc) of the multichromophore cell is the sum of the individually dyed solar cells. The process described here is technically very innovative and very simple in procedure. It has potentials to be adopted for panchromatic sensitization using more than two dyes in a single hybrid layer or layer-wise fabrication of a tandem structure at room temperature.

10.
Nano Lett ; 8(6): 1654-9, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18444689

RESUMEN

Donor antenna dyes provide an exciting route to improving the efficiency of dye sensitized solar cells owing to their high molar extinction coefficients and the effective spatial separation of charges in the charge-separated state, which decelerates the recombination of photogenerated charges. Vertically oriented TiO(2) nanotube arrays provide an optimal material architecture for photoelectrochemical devices because of their large internal surface area, lower recombination losses, and vectorial charge transport along the nanotube axis. In this study, the results obtained by sensitizing TiO(2) nanotube arrays with the donor antenna dye Ru-TPA-NCS are presented. Solar cells fabricated using an antenna dye-sensitized array of 14.4 microm long TiO(2) nanotubes on Ti foil subjected to AM 1.5 one sun illumination in the backside geometry exhibited an overall conversion efficiency of 6.1%. An efficiency of 4.1% was obtained in the frontside illumination geometry using a 1 microm long array of transparent TiO(2) nanotubes subjected to a TiCl(4) treatment and then sensitized with the Ru-TPA-NCS dye. Open circuit voltage decay measurements give insight into the recombination behavior in antenna-dye sensitized nanotube photoelectrodes, demonstrating outstanding properties likely due to a reduction in the influence of the surface traps and reduced electron transfer from TiO(2) to ions in solution.


Asunto(s)
Cristalización/métodos , Suministros de Energía Eléctrica , Nanotecnología/instrumentación , Nanotubos/química , Nanotubos/efectos de la radiación , Titanio/química , Titanio/efectos de la radiación , Colorantes , Diseño de Equipo , Análisis de Falla de Equipo , Luz , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Nanotecnología/métodos , Tamaño de la Partícula , Propiedades de Superficie
11.
Langmuir ; 20(24): 10474-80, 2004 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-15544375

RESUMEN

Many interfacial studies on solid surfaces, for example, quartz/water, assume that a standard cleaning procedure regenerates the surface reproducibly. In the reported work, the results of two surface specific techniques, sum frequency generation (SFG) spectroscopy and atomic force microscopy, show that the effects of prolonged exposure to Nanopure water and to pH 10 NaOH are distinctly different. In conjunction with the experimental data, molecular mechanics is used to correlate the SFG spectral frequencies to the hydrogen stretching vibrations of the surface-bound water molecules. It is found that after 17 days of soaking in water, water molecules penetrate into the SiO2 matrix to produce a swollen and amorphous layer; it is likely that broken Si-O bonds from the polishing process serve as nucleation sites for hydration and swelling. Disorder introduced in the interfacial water layer is detected by the rising intensity of the weakly hydrogen-bonded SFG peak at 3450 cm(-1). Dominance of the 3450 cm(-1) is absent in a pH 10, NaOH-soaked quartz disk, indicating that the strong hydrogen-bonded network in water remains intact.


Asunto(s)
Microscopía de Fuerza Atómica/métodos , Modelos Químicos , Cuarzo/química , Enlace de Hidrógeno , Modelos Moleculares , Sensibilidad y Especificidad , Espectrofotometría Infrarroja/métodos , Propiedades de Superficie , Factores de Tiempo , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...