Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros










Intervalo de año de publicación
1.
Curr Res Immunol ; 5: 100078, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38826690

RESUMEN

Prostaglandin (PG)D2 is produced and/or triggered by different parasites to modulate the course of the infection. These findings position PGD2 as a therapeutic target and suggest potential beneficial effects of repositioned drugs that target its synthesis or receptor engagement. However, recent in vivo data may suggest a more nuanced role and warrants further investigation of the role of PGD2 during the full course and complexity of parasitic infections.

2.
Med Hypotheses ; 167: 110943, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36105250

RESUMEN

SARS-CoV-2 infection intrigued medicine with diverse outcomes ranging from asymptomatic to severe acute respiratory syndrome (SARS) and death. After more than two years of pandemic, reports of reinfection concern researchers and physicists. Here, we will discuss potential mechanisms that can explain reinfections, including the aggravated ones. The major topics of this hypothesis paper are the disbalance between interferon and antibodies responses, HLA heterogeneity among the affected population, and increased proportion of cytotoxic CD4+ T cells polarization in relation to T follicular cells (Tfh) subtypes. These features affect antibody levels and hamper the humoral immunity necessary to prevent or minimize the viral burden in the case of reinfections.

3.
Front Cell Dev Biol ; 10: 836755, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35386204

RESUMEN

Mitochondria are multifunctional organelles of which ultrastructure is tightly linked to cell physiology. Accumulating evidence shows that mitochondrial remodeling has an impact on immune responses, but our current understanding of the mitochondrial architecture, interactions, and morphological changes in immune cells, mainly in eosinophils, is still poorly known. Here, we applied transmission electron microscopy (TEM), single-cell imaging analysis, and electron tomography, a technique that provides three-dimensional (3D) views at high resolution, to investigate mitochondrial dynamics in mouse eosinophils developing in cultures as well as in the context of inflammatory diseases characterized by recruitment and activation of these cells (mouse models of asthma, H1N1 influenza A virus (IAV) infection, and schistosomiasis mansoni). First, quantitative analyses showed that the mitochondrial area decrease 70% during eosinophil development (from undifferentiated precursor cells to mature eosinophils). Mitophagy, a consistent process revealed by TEM in immature but not in mature eosinophils, is likely operating in mitochondrial clearance during eosinophilopoiesis. Events of mitochondria interaction (inter-organelle membrane contacts) were also detected and quantitated within developing eosinophils and included mitochondria-endoplasmic reticulum, mitochondria-mitochondria, and mitochondria-secretory granules, all of them significantly higher in numbers in immature compared to mature cells. Moreover, single-mitochondrion analyses revealed that as the eosinophil matures, mitochondria cristae significantly increase in number and reshape to lamellar morphology. Eosinophils did not change (asthma) or reduced (IAV and Schistosoma infections) their mitochondrial mass in response to inflammatory diseases. However, asthma and schistosomiasis, but not IAV infection, induced amplification of both cristae numbers and volume in individual mitochondria. Mitochondrial cristae remodeling occurred in all inflammatory conditions with the proportions of mitochondria containing only lamellar or tubular, or mixed cristae (an ultrastructural aspect seen just in tissue eosinophils) depending on the tissue/disease microenvironment. The ability of mitochondria to interact with granules, mainly mobilized ones, was remarkably captured by TEM in eosinophils participating in all inflammatory diseases. Altogether, we demonstrate that the processes of eosinophilopoiesis and inflammation-induced activation interfere with the mitochondrial dynamics within mouse eosinophils leading to cristae remodeling and inter-organelle contacts. The understanding of how mitochondrial dynamics contribute to eosinophil immune functions is an open interesting field to be explored.

4.
Artículo en Inglés | MEDLINE | ID: mdl-34303171

RESUMEN

Cytoplasmic availability of leukocyte lipid bodies is controlled by a highly regulated cycle of opposing biogenesis- and catabolism-related events. While leukocyte biogenic machinery is well-characterized, lipid body catabolic mechanisms are yet mostly unknown. Here, we demonstrated that nordihydroguaiaretic acid (NDGA) very rapidly decreases the numbers of pre-formed lipid bodies within lipid body-enriched cytoplasm of mouse leukocytes - macrophages, neutrophils and eosinophils. NDGA mechanisms driving leukocyte lipid body disappearance were not related to loss of cell viability, 5-lipoxygenase inhibition, ATP autocrine/paracrine activity, or biogenesis inhibition. Proteasomal-dependent breakdown of lipid bodies appears to control NDGA-driven leukocyte lipid body reduction, since it was Bortezomib-sensitive in macrophages, neutrophils and eosinophils. Our findings unveil an acute NDGA-triggered lipid body catabolic event - a novel experimental model for the still neglected research area on leukocyte lipid body catabolism, additionally favoring further insights on proteasomal contribution to lipid body breakdown.


Asunto(s)
Leucocitos/efectos de los fármacos , Gotas Lipídicas/efectos de los fármacos , Inhibidores de la Lipooxigenasa/farmacología , Masoprocol/farmacología , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Animales , Eosinófilos/efectos de los fármacos , Eosinófilos/metabolismo , Leucocitos/metabolismo , Gotas Lipídicas/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo
5.
Cell Immunol ; 363: 104316, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33713902

RESUMEN

Clinical and experimental studies have described eosinophil infiltration in Leishmania amazonensis infection sites, positioning eosinophils strategically adjacent to the protozoan-infected macrophages in cutaneous leishmaniasis. Here, by co-culturing mouse eosinophils with L. amazonensis-infected macrophages, we studied the impact of eosinophils on macrophage ability to regulate intracellular L. amazonensis infection. Eosinophils prevented the increase in amastigote numbers within macrophages by a mechanism dependent on a paracrine activity mediated by eosinophil-derived prostaglandin (PG) D2 acting on DP2 receptors. Exogenous PGD2 mimicked eosinophil-mediated effect on managing L. amazonensis intracellular infection by macrophages and therefore may function as a complementary tool for therapeutic intervention in L. amazonensis-driven cutaneous leishmaniasis.


Asunto(s)
Eosinófilos/inmunología , Leishmaniasis/inmunología , Macrófagos/inmunología , Prostaglandina D2/inmunología , Animales , Eosinófilos/metabolismo , Femenino , Leishmania/inmunología , Leishmaniasis/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos BALB C , Comunicación Paracrina/inmunología , Prostaglandina D2/metabolismo , Receptores de Prostaglandina/metabolismo
6.
Front Endocrinol (Lausanne) ; 11: 572113, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33117286

RESUMEN

Eosinophils are key regulators of adipose tissue homeostasis, thus characterization of adipose tissue-related molecular factors capable of regulating eosinophil activity is of great interest. Leptin is known to directly activate eosinophils in vitro, but leptin ability of inducing in vivo eosinophilic inflammatory response remains elusive. Here, we show that leptin elicits eosinophil influx as well as its activation, characterized by increased lipid body biogenesis and LTC4 synthesis. Such leptin-triggered eosinophilic inflammatory response was shown to be dependent on activation of the mTOR signaling pathway, since it was (i) inhibited by rapamycin pre-treatment and (ii) reduced in PI3K-deficient mice. Local infiltration of activated eosinophils within leptin-driven inflammatory site was preceded by increased levels of classical mast cell-derived molecules, including TNFα, CCL5 (RANTES), and PGD2. Thus, mice were pre-treated with a mast cell degranulating agent compound 48/80 which was capable to impair leptin-induced PGD2 release, as well as eosinophil recruitment and activation. In agreement with an indirect mast cell-driven phenomenon, eosinophil accumulation induced by leptin was abolished in TNFR-1 deficient and also in HQL-79-pretreated mice, but not in mice pretreated with neutralizing antibodies against CCL5, indicating that both typical mast cell-driven signals TNFα and PGD2, but not CCL5, contribute to leptin-induced eosinophil influx. Distinctly, leptin-induced eosinophil lipid body (lipid droplet) assembly and LTC4 synthesis appears to depend on both PGD2 and CCL5, since both HQL-79 and anti-CCL5 treatments were able to inhibit these eosinophil activation markers. Altogether, our data show that leptin triggers eosinophilic inflammation in vivo via an indirect mechanism dependent on activation of resident mast cell secretory activity and mediation by TNFα, CCL5, and specially PGD2.


Asunto(s)
Eosinófilos/efectos de los fármacos , Leptina/farmacología , Mastocitos/fisiología , Prostaglandina D2/fisiología , Animales , Movimiento Celular/efectos de los fármacos , Quimiocina CCL5/fisiología , Eosinófilos/fisiología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
7.
PLoS Negl Trop Dis ; 14(10): e0008706, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33095767

RESUMEN

Prostaglandins (PGs) are immuno-active lipids that mediate the immune response in invertebrates and vertebrates. In insects, PGs play a role on different physiological processes such as reproduction, ion transport and regulation of cellular immunity. However, it is unclear whether PGs play a role in invertebrate's humoral immunity, and, if so, which immune signaling pathways would be modulated by PGs. Here, we show that Aedes aegypti gut microbiota and Gram-negative bacteria challenge induces prostaglandin production sensitive to an irreversible inhibitor of the vertebrate cyclooxygenase, acetylsalicylic acid (ASA). ASA treatment reduced PG synthesis and is associated with decreased expression of components of the Toll and IMD immune pathways, thereby rendering mosquitoes more susceptible to both bacterial and viral infections. We also shown that a cytosolic phospholipase (PLAc), one of the upstream regulators of PG synthesis, is induced by the microbiota in the midgut after blood feeding. The knockdown of the PLAc decreased prostaglandin production and enhanced the replication of Dengue in the midgut. We conclude that in Ae. aegypti, PGs control the amplitude of the immune response to guarantee an efficient pathogen clearance.


Asunto(s)
Aedes/virología , Virus del Dengue/fisiología , Inmunidad Humoral , Prostaglandinas/metabolismo , Aedes/inmunología , Animales , Línea Celular , Virus del Dengue/inmunología , Femenino , Regulación Enzimológica de la Expresión Génica , Interacciones Huésped-Patógeno , Fosfolipasas A2/genética , Fosfolipasas A2/metabolismo , Prostaglandinas/genética
8.
BMC Neurol ; 19(1): 146, 2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31253122

RESUMEN

BACKGROUND: Familial amyloid polyneuropathy (FAP) or ATTRv (amyloid TTR variant) amyloidosis is a fatal hereditary disease characterized by the deposition of amyloid fibrils composed of transthyretin (TTR). The current diagnosis of ATTRv relies on genetic identification of TTR mutations and on Congo Red-positive amyloid deposits, which are absent in most ATTRv patients that are asymptomatic or early symptomatic, supporting the need for novel biomarkers to identify patients in earlier disease phases allowing disease control. METHODS: In an effort to search for new markers for ATTRv, our group searched for nine inflammation markers in ATTRv serum from a cohort of 28 Brazilian ATTRv patients. RESULTS: We found that the levels of six markers were increased (TNF-α, IL-1ß, IL-8, IL-33, IFN-ß and IL-10), one had decreased levels (IL-12) and two of them were unchanged (IL-6 and cortisol). Interestingly, asymptomatic patients already presented high levels of IL-33, IL-1ß and IL-10, suggesting that inflammation may take place before fibril deposition. CONCLUSIONS: Our findings shed light on a new, previously unidentified aspect of ATTRv, which might help define new criteria for disease management, as well as provide additional understanding of ATTRv aggressiveness.


Asunto(s)
Neuropatías Amiloides Familiares/sangre , Neuropatías Amiloides Familiares/inmunología , Biomarcadores/sangre , Inflamación/sangre , Inflamación/inmunología , Brasil , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad
9.
Front Immunol ; 9: 2139, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30298073

RESUMEN

Leptin is a cytokine, produced mainly by mature adipocytes, that regulates the central nervous system, mainly to suppress appetite and stimulate energy expenditure. Leptin also regulates the immune response by controlling activation of immunomodulatory cells, including eosinophils. While emerging as immune regulatory cells with roles in adipose tissue homeostasis, eosinophils have a well-established ability to synthesize pro-inflammatory molecules such as lipid mediators, a key event in several inflammatory pathologies. Here, we investigated the impact and mechanisms involved in leptin-driven activation of eicosanoid-synthesizing machinery within eosinophils. Direct in vitro activation of human or mouse eosinophils with leptin elicited synthesis of lipoxygenase as well as cyclooxygenase products. Displaying selectivity, leptin triggered synthesis of LTC4 and PGD2, but not PGE2, in parallel to dose-dependent induction of lipid body/lipid droplets biogenesis. While dependent on PI3K activation, leptin-driven eosinophil activation was also sensitive to pertussis toxin, indicating the involvement of G-protein coupled receptors on leptin effects. Leptin-induced lipid body-driven LTC4 synthesis appeared to be mediated through autocrine activation of G-coupled CCR3 receptors by eosinophil-derived CCL5, inasmuch as leptin was able to trigger rapid CCL5 secretion, and neutralizing anti-RANTES or anti-CCR3 antibodies blocked lipid body assembly and LTC4 synthesis induced by leptin. Remarkably, autocrine activation of PGD2 G-coupled receptors DP1 and DP2 also contributes to leptin-elicited lipid body-driven LTC4 synthesis by eosinophils in a PGD2-dependent fashion. Blockade of leptin-induced PGD2 autocrine/paracrine activity by a specific synthesis inhibitor or DP1 and DP2 receptor antagonists, inhibited both lipid body biogenesis and LTC4 synthesis induced by leptin stimulation within eosinophils. In addition, CCL5-driven CCR3 activation appears to precede PGD2 receptor activation within eosinophils, since neutralizing anti-CCL5 or anti-CCR3 antibodies inhibited leptin-induced PGD2 secretion, while it failed to alter PGD2-induced LTC4 synthesis. Altogether, sequential activation of CCR3 and then PGD2 receptors by autocrine ligands in response to leptin stimulation of eosinophils culminates with eosinophil activation, characterized here by assembly of lipidic cytoplasmic platforms synthesis and secretion of the pleiotropic lipid mediators, PGD2, and LTC4.


Asunto(s)
Eosinófilos/inmunología , Leptina/metabolismo , Leucotrieno C4/biosíntesis , Receptores CCR3/metabolismo , Receptores Inmunológicos/metabolismo , Receptores de Prostaglandina/metabolismo , Animales , Células Cultivadas , Quimiocina CCL5/antagonistas & inhibidores , Quimiocina CCL5/metabolismo , Eosinófilos/citología , Eosinófilos/efectos de los fármacos , Eosinófilos/metabolismo , Femenino , Humanos , Hidantoínas/farmacología , Oxidorreductasas Intramoleculares/antagonistas & inhibidores , Oxidorreductasas Intramoleculares/metabolismo , Leptina/inmunología , Leucotrieno C4/inmunología , Gotas Lipídicas/inmunología , Gotas Lipídicas/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Piperidinas/farmacología , Cultivo Primario de Células , Prostaglandina D2/metabolismo , Receptores CCR3/antagonistas & inhibidores , Receptores CCR3/inmunología , Receptores Inmunológicos/antagonistas & inhibidores , Receptores Inmunológicos/inmunología , Receptores de Prostaglandina/antagonistas & inhibidores , Receptores de Prostaglandina/inmunología , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo
10.
Front Immunol ; 9: 111, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29467755

RESUMEN

Leptin directly activates macrophages and lymphocytes, but the role of leptin in neutrophil activation and migration is still controversial. Here, we investigate the in vivo mechanisms of neutrophil migration induced by leptin. The intraperitoneal injection of leptin (1 mg/kg) induces a time- and concentration-dependent neutrophil influx. We did not observe the enhancement of lipid bodies/droplets in neutrophils, after leptin treatment, as we had observed previously in peritoneal macrophages. The participation of leukotriene B4 (LTB4) in neutrophil recruitment triggered by leptin was investigated using different strategies. Leptin-induced neutrophil recruitment occurs both in the absence of 5-lipoxygenase activity in 5-lipoxygenase (5-LO)-/- mice and after the administration of either 5-LO inhibitor (Zileuton) or the LTB4 receptor antagonist (U-75302). Moreover, no direct induction of LTB4 by leptin could be observed. Neutrophil influx could not be prevented by the mammalian target of rapamycin (mTOR) inhibitor, rapamycin, contrasting with the leptin-induced signaling for lipid body formation in macrophage that is mTOR-dependent. Leptin administration led to tumor necrosis factor-alpha (TNFα) production by the peritoneal cells both in vivo and in vitro. In addition, neutrophil recruitment was inhibited in tumor necrosis factor receptor 1 (TNFR1-/-) mice, indicating a role for TNF in leptin-induced neutrophil recruitment to the peritoneal cavity. Leptin-induced neutrophil influx was PI3Kγ-dependent, as it was absent in PI3Kγ-/- mice. Accordingly, leptin induced the peritoneal cells to produce CXCL1, both in vivo and in vitro, and the neutrophil influx was ablated after using an antibody against CXCL1. Our results establish TNFα/TNFR1- and CXCL1-dependent signaling as important pathways for leptin-induced neutrophil migration in vivo.


Asunto(s)
Quimiocina CXCL1/fisiología , Leptina/fisiología , Neutrófilos/fisiología , Receptores Tipo I de Factores de Necrosis Tumoral/fisiología , Factor de Necrosis Tumoral alfa/fisiología , Animales , Araquidonato 5-Lipooxigenasa/genética , Movimiento Celular , Quimiocina CCL3/genética , Macrófagos Peritoneales/inmunología , Masculino , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Noqueados , Infiltración Neutrófila , Fosfatidilinositol 3-Quinasas/genética
11.
Front Immunol ; 9: 3161, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30740113

RESUMEN

Parasite-derived lipids may play important roles in host-pathogen interactions and immune evasion mechanisms. Remarkable accumulation of eosinophils is a characteristic feature of inflammation associated with parasitic disease, especially caused by helminthes. Infiltrating eosinophils are implicated in the pathogenesis of helminth infection by virtue of their capacity to release an array of tissue-damaging and immunoregulatory mediators. However, the mechanisms involved in the activation of human eosinophils by parasite-derived molecules are not clear. Here we investigated the effects and mechanisms of schistosomal lipids-induced activation of human eosinophils. Our results showed that stimulation of human eosinophils in vitro with total lipid extracts from adult worms of S. mansoni induced direct activation of human eosinophils, eliciting lipid droplet biogenesis, synthesis of leukotriene (LT) C4 and eoxin (EX) C4 (14,15 LTC4) and secretion of eosinophil pre-formed TGFß. We demonstrated that main eosinophil activating components within S. mansoni lipid extract are schistosomal-derived lysophosphatidylcholine (LPC) and prostaglandin (PG)D2. Moreover, TLR2 is up-regulated in human eosinophils upon stimulation with schistosomal lipids and pre-treatment with anti-TLR2 inhibited both schistosomal lipids- and LPC-, but not PGD2-, induced lipid droplet biogenesis and EXC4 synthesis within eosinophils, indicating that TLR2 mediates LPC-driven human eosinophil activation. By employing PGD2 receptor antagonists, we demonstrated that DP1 receptors are also involved in various parameters of human eosinophil activation induced by schistosomal lipids, but not by schistosomal LPC. In addition, schistosomal lipids and their active components PGD2 and LPC, triggered 15-LO dependent production of EXC4 and secretion of TGFß. Taken together, our results showed that schistosomal lipids contain at least two components-LPC and PGD2-that are capable of direct activation of human eosinophils acting on distinct eosinophil-expressed receptors, noticeably TLR2 as well as DP1, trigger human eosinophil activation characterized by production/secretion of pro-inflammatory and immunoregulatory mediators.


Asunto(s)
Eosinófilos/inmunología , Eosinófilos/metabolismo , Lípidos/inmunología , Receptores Inmunológicos/metabolismo , Receptores de Prostaglandina/metabolismo , Schistosoma/inmunología , Receptor Toll-Like 2/metabolismo , Animales , Araquidonato 15-Lipooxigenasa/metabolismo , Citocinas/biosíntesis , Humanos , Leucotrieno C4/biosíntesis , Gotas Lipídicas/metabolismo , Receptor Toll-Like 2/genética , Factor de Crecimiento Transformador beta/metabolismo
13.
Front Physiol ; 8: 828, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29118715

RESUMEN

Fasting and sepsis induce profound changes in thyroid hormone (TH) central and peripheral metabolism. These changes affect TH action and are called the non-thyroidal illness syndrome (NTIS). To date, it is still debated whether NTIS represents an adaptive response or a real hypothyroid state at the tissue level. Moreover, even though it has been considered the same syndrome, we hypothesized that fasting and sepsis induce a distinct set of changes in thyroid hormone metabolism. Herein, we aimed to evaluate the central and peripheral expression of genes involved in the transport (MCT8/Slc16a2 and MCT10/Slc16a10), metabolism (Dio1, Dio2, and Dio3) and action (Thra and Thrb) of TH during NTIS induced by fasting or sepsis. Male mice were subjected to a 48 h period of fasting or cecal ligation and puncture (CLP)-induced sepsis. At the peripheral level, fasting led to: (1) reduced serum thyroxine (T4) and triiodothyronine (T3), expression of Dio1, Thra, Slc16a2, and MCT8 protein in liver; (2) increased hepatic Slc16a10 and Dio3 expression; and (3) decreased Slc16a2 and Slc16a10 expressions in the thyroid gland. Fasting resulted in reduction of Tshb expression in the pituitary and increased expression of Dio2 in total hypothalamus, arcuate (ARC) and paraventricular (PVN) nucleus. CLP induced sepsis resulted in reduced: (1) T4 serum levels; (2) Dio1, Slc16a2, Slc16a10, Thra, and Thrb expression in liver as well as Slc16a2 expression in the thyroid gland (3) Thrb and Tshb mRNA expression in the pituitary; (4) total leukocyte counts in the bone marrow while increased its number in peritoneal and pleural fluids. In summary, fasting- or sepsis-driven NTIS promotes changes in the set point of hypothalamus-pituitary-thyroid axis through different mechanisms. Reduced hepatic THRs expression in conjunction with reduced TH transporters expression in the thyroid gland may indicate, respectively, reduction in the peripheral action and in the secretion of TH, which may contribute to the low TH serum levels observed in both models.

14.
Sci Rep ; 7: 46363, 2017 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-28393908

RESUMEN

Previous studies have indicated that the balance between different eicosanoids reflect the intensity of the inflammatory profile in patients with tegumentary leishmaniasis. More recently, pro-resolution lipid mediators have been shown to play critical roles in dampening pathological inflammatory processes to reestablish homeostasis in a diverse range of experimental settings. Among these lipid mediator, resolvins from D series have been described as potent anti-inflammatory and immunomodulatory mediators, and its activities include inhibition of leukocyte chemotaxis and blockage production of proinflammatory cytokines, while increasing the expression of regulatory mediators. Whether resolvins play significant roles in establishment and persistence of Leishmania infection is currently unknown. We addressed this question in the current study by assessing circulating levels of D-series resolvins in tegumentary leishmaniasis patients presenting with localized or diffuse disease. We found heightened expression of resolvin D1 in diffuse cutaneous leishmaniasis which was correlated with expression profile of biomarkers associated with disease pathogenesis. Additional in vitro experiments using primary human macrophages indicated that resolvin D1 may promote intracellular Leishmania amazonensis replication through a mechanism associated with induction of heme oxygenase-1. These results suggest that targeting resolvin D1 could serve as potential strategy for host directed therapy in diffuse cutaneous leishmaniasis.


Asunto(s)
Ácidos Docosahexaenoicos/sangre , Leishmaniasis/sangre , Macrófagos/parasitología , Adolescente , Adulto , Biomarcadores/metabolismo , Niño , Femenino , Humanos , Leishmania , Macrófagos/metabolismo , Masculino , Persona de Mediana Edad , Adulto Joven
15.
Methods Mol Biol ; 1554: 127-141, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28185186

RESUMEN

Eicosanoids are bioactive lipids derived from enzymatic metabolism of arachidonic acid via the cyclooxygenase (COX) and lipoxygenase (LOX) pathways. These lipids are newly formed and nonstorable molecules that have important roles in physiological and pathological processes. The particular interest to determine intracellular compartmentalization of eicosanoid-synthetic machinery has emerged as a key component in the regulation of eicosanoid synthesis and in delineating functional intracellular and extracellular actions of eicosanoids. In this chapter, we discuss the EicosaCell protocol, an assay that enables the intracellular detection and localization of eicosanoid lipid mediator-synthesizing compartments by means of a strategy to covalently cross-link and immobilize eicosanoids at their sites of synthesis followed by immunofluorescent-based localization of the targeted eicosanoid. EicosaCell assays have been successfully used to identify different intracellular compartments of synthesis of prostaglandins and leukotrienes upon cellular activation. This chapter covers basics of EicosaCell assay including its selection of reagents, immunodetection design as well as some troubleshooting recommendations.


Asunto(s)
Bioensayo/métodos , Eicosanoides/biosíntesis , Animales , Técnica del Anticuerpo Fluorescente , Procesamiento de Imagen Asistido por Computador/métodos , Espacio Intracelular/metabolismo , Metabolismo de los Lípidos , Ratones , Microscopía Fluorescente , Imagen Molecular/métodos , Imagen Óptica , Fagosomas , Programas Informáticos , Coloración y Etiquetado/métodos
16.
Parasit Vectors ; 8: 577, 2015 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-26552582

RESUMEN

BACKGROUND: Hepatic myofibroblasts are relevant for pathogenesis of S. mansoni infection. In normal liver, these perisinusoidal cells are quiescent, express the lipocyte phenotype, and are located in the Disse's space, being the major site of vitamin A storage. When activated, they convert to myofibroblasts and contribute to granulomatous and diffuse liver fibrosis. In the present work, we observed that myofibroblasts obtained from granulomatous periovular inflammatory reactions in schistosome-infected mice (GR-MF) produce in vitro immunomodulatory cytokines for eosinophil activation: IL-5 and eotaxin. METHODS AND RESULTS: The secretory activity of GR-MF was detected after TGF-ß and IL-13 stimulation using 2D and 3D cell culture systems. In a mixed co-culture system using GR-MF with hematopoietic bone marrow cells from infected mice, we observed eosinophil survival that was dependent upon IL-5 and eotaxin, since antibodies against this cytokines decreased eosinophil population, as measured by eosinophil peroxidase activity. CONCLUSION: These results indicate that GR-MF may contribute to maintenance of local eosinophilia in schistosomal hepatic granulomas, and can function as immunoregulatory cells, besides their role in production of fibrosis.


Asunto(s)
Quimiocina CCL11/metabolismo , Eosinófilos/efectos de los fármacos , Eosinófilos/inmunología , Interleucina-5/metabolismo , Hígado/parasitología , Miofibroblastos/metabolismo , Schistosoma mansoni/crecimiento & desarrollo , Animales , Modelos Animales de Enfermedad , Granuloma/patología , Hígado/patología , Ratones , Esquistosomiasis mansoni/parasitología , Esquistosomiasis mansoni/patología
17.
PLoS One ; 10(10): e0139805, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26448282

RESUMEN

Identifying new target molecules through which eosinophils secrete their stored proteins may reveal new therapeutic approaches for the control of eosinophilic disorders such as host immune responses to parasites. We have recently reported the expression of the purinergic P2Y12 receptor (P2Y12R) in human eosinophils; however, its functional role in this cell type and its involvement in eosinophilic inflammation remain unknown. Here, we investigated functional roles of P2Y12R in isolated human eosinophils and in a murine model of eosinophilic inflammation induced by Schistosoma mansoni (S. mansoni) infection. We found that adenosine 5'-diphosphate (ADP) induced human eosinophils to secrete eosinophil peroxidase (EPO) in a P2Y12R dependent manner. However, ADP did not interfere with human eosinophil apoptosis or chemotaxis in vitro. In vivo, C57Bl/6 mice were infected with cercariae of the Belo Horizonte strain of S. mansoni. Analyses performed 55 days post infection revealed that P2Y12R blockade reduced the granulomatous hepatic area and the eosinophilic infiltrate, collagen deposition and IL-13/IL-4 production in the liver without affecting the parasite oviposition. As found for humans, murine eosinophils also express the P2Y12R. P2Y12R inhibition increased blood eosinophilia, whereas it decreased the bone marrow eosinophil count. Our results suggest that P2Y12R has an important role in eosinophil EPO secretion and in establishing the inflammatory response in the course of a S. mansoni infection.


Asunto(s)
Eosinófilos/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Schistosoma mansoni/patogenicidad , Adenosina Difosfato/farmacología , Animales , Células de la Médula Ósea/citología , Supervivencia Celular/efectos de los fármacos , Colágeno/metabolismo , Modelos Animales de Enfermedad , Peroxidasa del Eosinófilo/metabolismo , Eosinófilos/efectos de los fármacos , Eosinófilos/inmunología , Humanos , Inflamación , Interleucina-13/análisis , Interleucina-13/sangre , Interleucina-4/análisis , Interleucina-4/sangre , Hígado/metabolismo , Hígado/parasitología , Hígado/patología , Ratones , Ratones Endogámicos C57BL , Receptores Purinérgicos P2Y12/química , Receptores Purinérgicos P2Y12/genética , Esquistosomiasis mansoni/inmunología , Esquistosomiasis mansoni/parasitología , Esquistosomiasis mansoni/patología , Células Th2/inmunología
18.
PLoS One ; 10(5): e0124888, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25933287

RESUMEN

B-1 cells can be differentiated from B-2 cells because they are predominantly located in the peritoneal and pleural cavities and have distinct phenotypic patterns and activation properties. A mononuclear phagocyte derived from B-1 cells (B-1CDP) has been described. As the B-1CDP cells migrate to inflammatory/infectious sites and exhibit phagocytic capacity, the microbicidal ability of these cells was investigated using the Leishmania major infection model in vitro. The data obtained in this study demonstrate that B-1CDP cells are more susceptible to infection than peritoneal macrophages, since B-1CDP cells have a higher number of intracellular amastigotes forms and consequently release a larger number of promastigotes. Exacerbated infection by L. major required lipid bodies/PGE2 and IL-10 by B-1CDP cells. Both infection and the production of IL-10 were decreased when PGE2 production was blocked by NSAIDs. The involvement of IL-10 in this mechanism was confirmed, since B-1CDP cells from IL-10 KO mice are more competent to control L. major infection than cells from wild type mice. These findings further characterize the B-1CDP cells as an important mononuclear phagocyte that plays a previously unrecognized role in host responses to L. major infection, most likely via PGE2-driven production of IL-10.


Asunto(s)
Linfocitos B/parasitología , Dinoprostona/metabolismo , Interleucina-10/metabolismo , Leishmania major/fisiología , Leishmaniasis Cutánea/parasitología , Fagocitos/parasitología , Animales , Aspirina/farmacología , Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología , Susceptibilidad a Enfermedades , Interleucina-10/biosíntesis , Leishmania major/efectos de los fármacos , Leishmania major/crecimiento & desarrollo , Leishmania major/inmunología , Leishmaniasis Cutánea/inmunología , Gotas Lipídicas/metabolismo , Macrófagos Peritoneales/parasitología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Parasitemia/inmunología , Parasitemia/parasitología , Fagocitos/efectos de los fármacos , Fenotipo , Prostaglandina-Endoperóxido Sintasas/metabolismo
19.
Artículo en Inglés | MEDLINE | ID: mdl-25687497

RESUMEN

Hepatic Stellate Cells (HSCs) play a crucial role in pathogenesis of liver inflammation and fibrosis. During chronic liver injury, HSCs lose vitamin A and transform into myofibroblastic cells. In schistosomal granulomas, these activated HSCs are called GR-HSCs. Schistosomal-triggered hepatic fibrogenesis has TGF-ß as the most potent fibrogenic stimulus, that also controls gene expression of the angiogenic molecule VEGF in HSCs. COX-dependent production of prostaglandins (PGs) also play role in angiogenic processes. Besides angiogenic roles, prostanoids control immunomodulation of Schistosoma mansoni infection. Specifically, schistosoma-derived PGD2 has emerged as a key parasite regulator of immune defense evasion, while no role is still established to host PGD2. Therefore, the aim of this work is to investigate the ability of GR-HSCs to synthesize COX-derived PGD2 and a potential role of this prostanoid in VEGF production by GR-HSCs in vitro. Here, we confirmed that GR-HSCs express COX-2, which displayed perinuclear localization. While unstimulated GR-HSCs produce basal levels of PGD2, TGF-ß stimulation besides increasing COX2- mRNA levels, enhanced synthesis/secretion of PGD2 in GR-HSCs supernatant. Moreover, GR-HSCs-derived PGD2 mediate VEGF production by TGF-ß-stimulated GR-HSCs, since the pre-treatment with HQL-79, an inhibitor of hematopoietic PGD synthase inhibited both PGD2 synthesis and VEGF secretion by TGF-ß-stimulated GR-HSCs. All together, our findings show an autocrine/paracrine activity of GR-HSCs-derived PGD2 on TGF-ß-induced VEGF production by GR-HSCs, unveiling a role for PGD2 as important regulator of HSCs activation in hepatic granulomas from schistosome infected mice.


Asunto(s)
Ciclooxigenasa 2/metabolismo , Granuloma/metabolismo , Células Estrelladas Hepáticas/parasitología , Prostaglandina D2/metabolismo , Esquistosomiasis mansoni/patología , Factor de Crecimiento Transformador beta/farmacología , Animales , Comunicación Celular/efectos de los fármacos , Células Cultivadas , Ciclooxigenasa 2/genética , Granuloma/enzimología , Granuloma/parasitología , Células Estrelladas Hepáticas/enzimología , Células Estrelladas Hepáticas/metabolismo , Técnicas In Vitro , Hígado/metabolismo , Hígado/parasitología , Hígado/patología , Masculino , Ratones , Piperidinas/farmacología , Esquistosomiasis mansoni/enzimología , Esquistosomiasis mansoni/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
20.
J Infect Dis ; 210(4): 656-66, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24634497

RESUMEN

Neutrophils are rapidly recruited to the site of Leishmania infection and play an active role in capturing and killing parasites. They are the main source of leukotriene B4 (LTB4), a potent proinflammatory lipid mediator. However, the role of LTB4 in neutrophil infection by Leishmania amazonensis is not clear. In this study, we show that L. amazonensis or its lipophosphoglycan can induce neutrophil activation, degranulation, and LTB4 production. Using pharmacological inhibitors of leukotriene synthesis, our findings reveal an LTB4-driven autocrine/paracrine regulatory effect. In particular, neutrophil-derived LTB4 controls L. amazonensis killing, degranulation, and reactive oxygen species production. In addition, L. amazonensis infection induces an early increase in Toll-like receptor 2 expression, which facilitates parasite internalization. Nuclear factor kappa B (NFkB) pathway activation represents a required upstream event for L. amazonensis-induced LTB4 synthesis. These leishmanicidal mechanisms mediated by neutrophil-derived LTB4 act through activation of its receptor, B leukotriene receptor 1 (BLT1).


Asunto(s)
Leishmania mexicana/metabolismo , Leishmaniasis Cutánea/metabolismo , Leucotrieno B4/metabolismo , Neutrófilos/metabolismo , Antígenos de Superficie/metabolismo , Humanos , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores de Leucotrieno B4/metabolismo , Receptor Toll-Like 2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...