Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ChemMedChem ; 11(3): 331-9, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26751718

RESUMEN

Nitroarenes are less preferred in drug discovery due to their potential to be mutagenic. However, several nitroarenes were shown to be promising antitubercular agents with specific modes of action, namely, nitroimidazoles and benzothiazinones. The nitro group in these compounds is activated through different mechanisms, both enzymatic and non-enzymatic, in mycobacteria prior to binding to the target of interest. From a whole-cell screening program, we identified a novel lead nitrobenzothiazole (BT) series that acts by inhibition of decaprenylphosphoryl-ß-d-ribose 2'-epimerase (DprE1) of Mycobacterium tuberculosis (Mtb). The lead was found to be mutagenic to start with. Our efforts to mitigate mutagenicity resulted in the identification of 6-methyl-7-nitro-5-(trifluoromethyl)-1,3-benzothiazoles (cBTs), a novel class of antitubercular agents that are non-mutagenic and exhibit an improved safety profile. The methyl group ortho to the nitro group decreases the electron affinity of the series, and is hence responsible for the non-mutagenic nature of these compounds. Additionally, the co-crystal structure of cBT in complex with Mtb DprE1 established the mode of binding. This investigation led to a new non-mutagenic antitubercular agent and demonstrates that the mutagenic nature of nitroarenes can be solved by modulation of stereoelectronic properties.


Asunto(s)
Antituberculosos/farmacología , Benzotiazoles/farmacología , Mutágenos/química , Mycobacterium tuberculosis/efectos de los fármacos , Nitrocompuestos/farmacología , Antituberculosos/efectos adversos , Antituberculosos/química , Benzotiazoles/efectos adversos , Benzotiazoles/química , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Nitrocompuestos/efectos adversos , Nitrocompuestos/química , Estereoisomerismo , Relación Estructura-Actividad
2.
Bioorg Med Chem ; 23(24): 7694-710, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26643218

RESUMEN

We report the discovery of benzothiazoles, a novel anti-mycobacterial series, identified from a whole cell based screening campaign. Benzothiazoles exert their bactericidal activity against Mycobacterium tuberculosis (Mtb) through potent inhibition of decaprenylphosphoryl-ß-d-ribose 2'-oxidase (DprE1), the key enzyme involved in arabinogalactan synthesis. Specific target linkage and mode of binding were established using co-crystallization and protein mass spectrometry studies. Most importantly, the current study provides insights on the utilization of systematic medicinal chemistry approaches to mitigate safety liabilities while improving potency during progression from an initial genotoxic hit, the benzothiazole N-oxides (BTOs) to the lead-like AMES negative, crowded benzothiazoles (cBTs). These findings offer opportunities for development of safe clinical candidates against tuberculosis. The design strategy adopted could find potential application in discovery of safe drugs in other therapy areas too.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Antituberculosos/química , Antituberculosos/farmacología , Proteínas Bacterianas/metabolismo , Benzotiazoles/química , Benzotiazoles/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/enzimología , Oxidorreductasas de Alcohol/antagonistas & inhibidores , Proteínas Bacterianas/antagonistas & inhibidores , Diseño de Fármacos , Humanos , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología
3.
Nat Commun ; 6: 6715, 2015 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-25823686

RESUMEN

The widespread emergence of Plasmodium falciparum (Pf) strains resistant to frontline agents has fuelled the search for fast-acting agents with novel mechanism of action. Here, we report the discovery and optimization of novel antimalarial compounds, the triaminopyrimidines (TAPs), which emerged from a phenotypic screen against the blood stages of Pf. The clinical candidate (compound 12) is efficacious in a mouse model of Pf malaria with an ED99 <30 mg kg(-1) and displays good in vivo safety margins in guinea pigs and rats. With a predicted half-life of 36 h in humans, a single dose of 260 mg might be sufficient to maintain therapeutic blood concentration for 4-5 days. Whole-genome sequencing of resistant mutants implicates the vacuolar ATP synthase as a genetic determinant of resistance to TAPs. Our studies highlight the potential of TAPs for single-dose treatment of Pf malaria in combination with other agents in clinical development.


Asunto(s)
Antimaláricos/farmacología , Plasmodium falciparum/efectos de los fármacos , Pirimidinas/farmacología , Aminas/farmacología , Animales , Evaluación Preclínica de Medicamentos , Farmacorresistencia Microbiana , Cobayas , Semivida , Ratas
4.
J Med Chem ; 58(2): 753-66, 2015 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-25486447

RESUMEN

M. tuberculosis thymidylate kinase (Mtb TMK) has been shown in vitro to be an essential enzyme in DNA synthesis. In order to identify novel leads for Mtb TMK, we performed a high throughput biochemical screen and an NMR based fragment screen through which we discovered two novel classes of inhibitors, 3-cyanopyridones and 1,6-naphthyridin-2-ones, respectively. We describe three cyanopyridone subseries that arose during our hit to lead campaign, along with cocrystal structures of representatives with Mtb TMK. Structure aided optimization of the cyanopyridones led to single digit nanomolar inhibitors of Mtb TMK. Fragment based lead generation, augmented by crystal structures and the SAR from the cyanopyridones, enabled us to drive the potency of our 1,6-naphthyridin-2-one fragment hit from 500 µM to 200 nM while simultaneously improving the ligand efficiency. Cyanopyridone derivatives containing sulfoxides and sulfones showed cellular activity against M. tuberculosis. To the best of our knowledge, these compounds are the first reports of non-thymidine-like inhibitors of Mtb TMK.


Asunto(s)
Inhibidores Enzimáticos/síntesis química , Mycobacterium tuberculosis/efectos de los fármacos , Timidilato Sintasa/antagonistas & inhibidores , Sitios de Unión , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Ensayos Analíticos de Alto Rendimiento , Humanos , Espectroscopía de Resonancia Magnética , Mycobacterium tuberculosis/enzimología , Relación Estructura-Actividad , Timidilato Sintasa/química
5.
ACS Med Chem Lett ; 5(5): 491-5, 2014 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-24900867

RESUMEN

A whole cell based screening effort on a focused library from corporate collection resulted in the identification of biarylmethoxy nicotinamides as novel inhibitors of M. tuberculosis (Mtu) H37Rv. The series exhibited tangible structure-activity relationships, and during hit to lead exploration, a cellular potency of 100 nM was achieved, which is an improvement of >200-fold from the starting point. The series is very specific to Mtu and noncytotoxic up to 250 µM as measured in the mammalian cell line THP-1 based cytotoxicity assay. This compound class retains its potency on several drug sensitive and single drug resistant clinical isolates, which indicate that the compounds could be acting through a novel mode of action.

6.
J Med Chem ; 57(13): 5702-13, 2014 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-24914738

RESUMEN

Whole-cell high-throughput screening of the AstraZeneca compound library against the asexual blood stage of Plasmodium falciparum (Pf) led to the identification of amino imidazoles, a robust starting point for initiating a hit-to-lead medicinal chemistry effort. Structure-activity relationship studies followed by pharmacokinetics optimization resulted in the identification of 23 as an attractive lead with good oral bioavailability. Compound 23 was found to be efficacious (ED90 of 28.6 mg·kg(-1)) in the humanized P. falciparum mouse model of malaria (Pf/SCID model). Representative compounds displayed a moderate to fast killing profile that is comparable to that of chloroquine. This series demonstrates no cross-resistance against a panel of Pf strains with mutations to known antimalarial drugs, thereby suggesting a novel mechanism of action for this chemical class.


Asunto(s)
Antimaláricos/farmacología , Bencimidazoles/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Animales , Antimaláricos/química , Bencimidazoles/farmacocinética , Bencimidazoles/farmacología , Disponibilidad Biológica , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Humanos , Concentración 50 Inhibidora , Ratones , Bibliotecas de Moléculas Pequeñas , Relación Estructura-Actividad
7.
J Med Chem ; 57(15): 6572-82, 2014 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-24967731

RESUMEN

Diarylthiazole (DAT), a hit from diversity screening, was found to have potent antimycobacterial activity against Mycobacterium tuberculosis (Mtb). In a systematic medicinal chemistry exploration, we demonstrated chemical opportunities to optimize the potency and physicochemical properties. The effort led to more than 10 compounds with submicromolar MICs and desirable physicochemical properties. The potent antimycobacterial activity, in conjunction with low molecular weight, made the series an attractive lead (antibacterial ligand efficiency (ALE)>0.4). The series exhibited excellent bactericidal activity and was active against drug-sensitive and resistant Mtb. Mutational analysis showed that mutations in prrB impart resistance to DAT compounds but not to reference drugs tested. The sensor kinase PrrB belongs to the PrrBA two component system and is potentially the target for DAT. PrrBA is a conserved, essential regulatory mechanism in Mtb and has been shown to have a role in virulence and metabolic adaptation to stress. Hence, DATs provide an opportunity to understand a completely new target system for antimycobacterial drug discovery.


Asunto(s)
Antituberculosos/química , Proteínas Bacterianas/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Proteínas Quinasas/metabolismo , Tiazoles/química , Animales , Antituberculosos/síntesis química , Antituberculosos/farmacología , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana , Ensayos Analíticos de Alto Rendimiento , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Mutación , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/aislamiento & purificación , Polimorfismo de Nucleótido Simple , Proteínas Quinasas/genética , Bibliotecas de Moléculas Pequeñas , Relación Estructura-Actividad , Tiazoles/síntesis química , Tiazoles/farmacología
8.
Malar J ; 13: 143, 2014 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-24731288

RESUMEN

BACKGROUND: Repositioning of existing drugs has been suggested as a fast track for developing new anti-malarial agents. The compound libraries of GlaxoSmithKline (GSK), Pfizer and AstraZeneca (AZ) comprising drugs that have undergone clinical studies in other therapeutic areas, but not achieved approval, and a set of US Food and Drug Administration (FDA)-approved drugs and other bio-actives were tested against Plasmodium falciparum blood stages. METHODS: Molecules were tested initially against erythrocytic co-cultures of P. falciparum to measure proliferation inhibition using one of the following methods: SYBR®I dye DNA staining assay (3D7, K1 or NF54 strains); [(3)H] hypoxanthine radioisotope incorporation assay (3D7 and 3D7A strain); or 4',6-diamidino-2-phenylindole (DAPI) DNA imaging assay (3D7 and Dd2 strains). After review of the available clinical pharmacokinetic and safety data, selected compounds with low µM activity and a suitable clinical profile were tested in vivo either in a Plasmodium berghei four-day test or in the P. falciparum Pf3D7(0087/N9) huSCID 'humanized' mouse model. RESULTS: Of the compounds included in the GSK and Pfizer sets, 3.8% (9/238) had relevant in vitro anti-malarial activity while 6/100 compounds from the AZ candidate drug library were active. In comparison, around 0.6% (24/3,800) of the FDA-approved drugs and other bio-actives were active. After evaluation of available clinical data, four investigational drugs, active in vitro were tested in the P. falciparum humanized mouse model: UK-112,214 (PAF-H1 inhibitor), CEP-701 (protein kinase inhibitor), CEP-1347 (protein kinase inhibitor), and PSC-833 (p-glycoprotein inhibitor). Only UK-112,214 showed significant efficacy against P. falciparum in vivo, although at high doses (ED90 131.3 mg/kg [95% CI 112.3, 156.7]), and parasitaemia was still present 96 hours after treatment commencement. Of the six actives from the AZ library, two compounds (AZ-1 and AZ-3) were marginally efficacious in vivo in a P. berghei model. CONCLUSIONS: Repositioning of existing therapeutics in malaria is an attractive proposal. Compounds active in vitro at µM concentrations were identified. However, therapeutic concentrations may not be effectively achieved in mice or humans because of poor bio-availability and/or safety concerns. Stringent safety requirements for anti-malarial drugs, given their widespread use in children, make this a challenging area in which to reposition therapy.


Asunto(s)
Antimaláricos/farmacología , Reposicionamiento de Medicamentos , Malaria/tratamiento farmacológico , Plasmodium berghei/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Animales , Malaria Falciparum/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Parasitaria
9.
Antimicrob Agents Chemother ; 58(6): 3312-26, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24687493

RESUMEN

Pantothenate kinase (PanK) catalyzes the phosphorylation of pantothenate, the first committed and rate-limiting step toward coenzyme A (CoA) biosynthesis. In our earlier reports, we had established that the type I isoform encoded by the coaA gene is an essential pantothenate kinase in Mycobacterium tuberculosis, and this vital information was then exploited to screen large libraries for identification of mechanistically different classes of PanK inhibitors. The present report summarizes the synthesis and expansion efforts to understand the structure-activity relationships leading to the optimization of enzyme inhibition along with antimycobacterial activity. Additionally, we report the progression of two distinct classes of inhibitors, the triazoles, which are ATP competitors, and the biaryl acetic acids, with a mixed mode of inhibition. Cocrystallization studies provided evidence of these inhibitors binding to the enzyme. This was further substantiated with the biaryl acids having MIC against the wild-type M. tuberculosis strain and the subsequent establishment of a target link with an upshift in MIC in a strain overexpressing PanK. On the other hand, the ATP competitors had cellular activity only in a M. tuberculosis knockdown strain with reduced PanK expression levels. Additionally, in vitro and in vivo survival kinetic studies performed with a M. tuberculosis PanK (MtPanK) knockdown strain indicated that the target levels have to be significantly reduced to bring in growth inhibition. The dual approaches employed here thus established the poor vulnerability of PanK in M. tuberculosis.


Asunto(s)
Antituberculosos/farmacología , Inhibidores Enzimáticos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Western Blotting , Técnicas de Silenciamiento del Gen , Humanos , Pruebas de Sensibilidad Microbiana , Mycobacterium bovis/genética , Mycobacterium tuberculosis/genética , Fenotipo , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Conformación Proteica , Quinolonas/farmacología , Relación Estructura-Actividad , Triazoles/farmacología
10.
J Med Chem ; 56(21): 8533-42, 2013 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-24107081

RESUMEN

InhA is a well validated Mycobacterium tuberculosis (Mtb) target as evidenced by the clinical success of isoniazid. Translating enzyme inhibition to bacterial cidality by targeting the fatty acid substrate site of InhA remains a daunting challenge. The recent disclosure of a methyl-thiazole series demonstrates that bacterial cidality can be achieved with potent enzyme inhibition and appropriate physicochemical properties. In this study, we report the molecular mode of action of a lead methyl-thiazole, along with analogues with improved CYP inhibition profile. We have identified a novel mechanism of InhA inhibition characterized by a hitherto unreported "Y158-out" inhibitor-bound conformation of the protein that accommodates a neutrally charged "warhead". An additional novel hydrophilic interaction with protein residue M98 allows the incorporation of favorable physicochemical properties for cellular activity. Notably, the methyl-thiazole prefers the NADH-bound form of the enzyme with a Kd of ~13.7 nM, as against the NAD(+)-bound form of the enzyme.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Mycobacterium tuberculosis/enzimología , Oxidorreductasas/antagonistas & inhibidores , Tiazoles/farmacología , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Modelos Moleculares , Estructura Molecular , Oxidorreductasas/metabolismo , Relación Estructura-Actividad , Tiazoles/síntesis química , Tiazoles/química
11.
J Biol Chem ; 288(25): 18260-70, 2013 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-23661699

RESUMEN

Mycobacterium tuberculosis, the bacterial causative agent of tuberculosis, currently affects millions of people. The emergence of drug-resistant strains makes development of new antibiotics targeting the bacterium a global health priority. Pantothenate kinase, a key enzyme in the universal biosynthesis of the essential cofactor CoA, was targeted in this study to find new tuberculosis drugs. The biochemical characterizations of two new classes of compounds that inhibit pantothenate kinase from M. tuberculosis are described, along with crystal structures of their enzyme-inhibitor complexes. These represent the first crystal structures of this enzyme with engineered inhibitors. Both classes of compounds bind in the active site of the enzyme, overlapping with the binding sites of the natural substrate and product, pantothenate and phosphopantothenate, respectively. One class of compounds also interferes with binding of the cofactor ATP. The complexes were crystallized in two crystal forms, one of which is in a new space group for this enzyme and diffracts to the highest resolution reported for any pantothenate kinase structure. These two crystal forms allowed, for the first time, modeling of the cofactor-binding loop in both open and closed conformations. The structures also show a binding mode of ATP different from that previously reported for the M. tuberculosis enzyme but similar to that in the pantothenate kinases of other organisms.


Asunto(s)
Proteínas Bacterianas/química , Inhibidores Enzimáticos/química , Mycobacterium tuberculosis/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Biocatálisis/efectos de los fármacos , Cristalografía por Rayos X , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Modelos Moleculares , Conformación Molecular , Datos de Secuencia Molecular , Ácido Pantoténico/análogos & derivados , Ácido Pantoténico/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
12.
J Biomol Screen ; 17(3): 293-302, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22086722

RESUMEN

The authors describe the discovery of anti-mycobacterial compounds through identifying mechanistically diverse inhibitors of the essential Mycobacterium tuberculosis (Mtb) enzyme, pantothenate kinase (CoaA). Target-driven drug discovery technologies often work with purified enzymes, and inhibitors thus discovered may not optimally inhibit the form of the target enzyme predominant in the bacterial cell or may not be available at the desired concentration. Therefore, in addition to addressing entry or efflux issues, inhibitors with diverse mechanisms of inhibition (MoI) could be prioritized before hit-to-lead optimization. The authors describe a high-throughput assay based on protein thermal melting to screen large numbers of compounds for hits with diverse MoI. Following high-throughput screening for Mtb CoaA enzyme inhibitors, a concentration-dependent increase in protein thermal stability was used to identify true binders, and the degree of enhancement or reduction in thermal stability in the presence of substrate was used to classify inhibitors as competitive or non/uncompetitive. The thermal shift-based MoI assay could be adapted to screen hundreds of compounds in a single experiment as compared to traditional biochemical approaches for MoI determination. This MoI was confirmed through mechanistic studies that estimated K(ie) and K(ies) for representative compounds and through nuclear magnetic resonance-based ligand displacement assays.


Asunto(s)
Inhibidores Enzimáticos/química , Ensayos Analíticos de Alto Rendimiento/métodos , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Bioensayo , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/análisis , Inhibidores Enzimáticos/metabolismo
13.
ACS Med Chem Lett ; 3(9): 736-40, 2012 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-24900541

RESUMEN

NDH-2 is an essential respiratory enzyme in Mycobacterium tuberculosis (Mtb), which plays an important role in the physiology of Mtb. Herein, we present a target-based effort to identify a new structural class of inhibitors for NDH-2. High-throughput screening of the AstraZeneca corporate collection resulted in the identification of quinolinyl pyrimidines as the most promising class of NDH-2 inhibitors. Structure-activity relationship studies showed improved enzyme inhibition (IC50) against the NDH-2 target, which in turn translated into cellular activity against Mtb. Thus, the compounds in this class show a good correlation between enzyme inhibition and cellular potency. Furthermore, early ADME profiling of the best compounds showed promising results and highlighted the quinolinyl pyrimidine class as a potential lead for further development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...