Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vaccines (Basel) ; 11(9)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37766159

RESUMEN

Porcine Circovirus type 2 (PCV2) vaccination of gilts during acclimation has become a routine practice in commercial pig farms to homogenize herd immunity to PCV2 and reduce the impact of diseases associated with PCV2 infection, namely reproductive, respiratory, systemic, and other PCV2-associated diseases. The periodic mass vaccination of sows, with the same objectives, is also common. To ensure mass vaccination is an appropriate health management tool, demonstrating that the vaccine is safe in different sow/gilt physiological stages is necessary. The objective of the present studies was to evaluate safety of a PCV2a/PCV2b/Mycoplasma hyopneumoniae (PCV2a2bMHP) killed vaccine in sows and gilts during gestation and lactation, under controlled experimental pen conditions, and during gestation, mimicking mass vaccination, under field conditions. Safety was assessed by monitoring for immediate adverse reactions after vaccination, rectal temperatures after vaccination (controlled experimental pen studies only), local and systemic reactions, and reproductive performance (studies conducted during pregnancy) or lactation performance (studies conducted during lactation). In total, 416 sows/gilts were enrolled, and more than 4000 piglets were observed during their first week of life, under field conditions. In both controlled experimental and field studies, no immediate anaphylactic type reactions were observed after vaccination and the incidence of adverse events, such as depression or decreased appetite, was acceptable for what is expected in a swine herd. In the studies conducted during gestation, vaccination did not significantly increase rectal temperature of the vaccinated animals. Sow reproductive outcomes were not affected by vaccination. The farrowing rate of animals participating in the field study was higher than the historic averages of the farms. In the laboratory studies conducted during the first and second half of gestation, no differences in reproductive outcome were observed between vaccinated and non-vaccinated animals. However, sows vaccinated during lactation experienced a transient hyperthermia which did not affect milk production since the piglets' average daily weight gain was not affected. The previously described results confirm that the administration of a PCV2a2bMHP vaccine was safe in the tested conditions. All the anticipated benefits of sow and gilt PCV2 vaccination, such as homogenization of PCV2 antibody titers or reduction in PCV2 circulation in the herd, would not be masked by potential adverse events due to herd vaccination. In conclusion, the administration of a PCV2a2bMHP vaccine to sows and gilts during different stages of gestation and during lactation is safe.

2.
Vaccines (Basel) ; 10(12)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36560518

RESUMEN

This study aimed to evaluate the efficacy of a new trivalent vaccine containing inactivated Porcine Circovirus 1-2a and 1-2b chimeras and a Mycoplasma hyopneumoniae bacterin administered to pigs around 3 weeks of age. This trivalent vaccine has already been proved as efficacious in a split-dose regimen but has not been tested in a single-dose scenario. For this purpose, a total of four studies including two pre-clinical and two clinical studies were performed. Globally, a significant reduction in PCV-2 viraemia and faecal excretion was detected in vaccinated pigs compared to non-vaccinated animals, as well as lower histopathological lymphoid lesion plus PCV-2 immunohistochemistry scorings, and incidence of PCV-2-subclinical infection. Moreover, in field trial B, a significant increase in body weight and in average daily weight gain were detected in vaccinated animals compared to the non-vaccinated ones. Circulation of PCV-2b in field trial A and PCV-2a plus PCV-2d in field trial B was confirmed by virus sequencing. Hence, the efficacy of this new trivalent vaccine against a natural PCV-2a, PCV-2b or PCV-2d challenge was demonstrated in terms of reduction of histopathological lymphoid lesions and PCV-2 detection in tissues, serum and faeces, as well as improvement of production parameters.

3.
Viruses ; 14(8)2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-36016423

RESUMEN

A safe and efficacious live-attenuated vaccine for porcine epidemic diarrhea virus (PEDV) is not commercially available in the United States yet. Two major PEDV strains are currently circulating in US swine: highly virulent non-S-INDEL strain and milder virulent S-INDEL strain. In this study, the safety and protective efficacy of a plaque-purified S-INDEL PEDV isolate formulated as a vaccine candidate was evaluated. Ten pregnant gilts were divided into three groups and orally inoculated at 79 days of gestation and then boosted at 100 days gestation (T01: n = 4, vaccination/challenge; T02: n = 4, non-vaccination/challenge; T03: n = 2, non-vaccination/non-challenge). None of the gilts had adverse clinical signs after vaccination. Only one T01 gilt (#5026) had viral replication and detectible viral RNA in feces. The same gilt had consistent levels of PEDV-specific IgG and IgA antibodies in serum and colostrum/milk. Farrowed piglets at 3 to 5 days of age from T01 and T02 gilts were orally challenged with 103 TCID50/pig of the virulent non-S-INDEL PEDV while T03 piglets were orally inoculated with virus-negative medium. T01 litters had overall lower mortality than T02 (T01 36.4% vs. T02 74.4%). Specifically, there was 0% litter mortality from T01 gilt 5026. Overall, it appears that vaccination of pregnant gilts with S-INDEL PEDV can passively protect piglets if there is virus replication and immune response induction in the pregnant gilts.


Asunto(s)
Infecciones por Coronavirus , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Vacunas Virales , Animales , Animales Recién Nacidos , Anticuerpos Antivirales , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/veterinaria , Femenino , Virus de la Diarrea Epidémica Porcina/genética , Embarazo , Sus scrofa , Porcinos , Enfermedades de los Porcinos/epidemiología , Estados Unidos , Vacunas Atenuadas
4.
Vet Res ; 53(1): 12, 2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35180885

RESUMEN

Recent publications suggest PCV2 vaccine-induced protection is superior when the vaccine and challenge are closely matched. PCV2's evolutionary rate, propensity for recombination, and genotype shifting, all provide rationale for modernizing PCV2 vaccines. One mechanism to increase a vaccine's epitope breadth is by designing a bivalent vaccine. The objective of these studies was to evaluate efficacy of a monovalent (PCV1-2 chimera, cPCV2a or cPCV2b) and bivalent (cPCV2a-cPCV2b) vaccine in terms of homologous and heterologous efficacy. In Study A, pigs were vaccinated with cPCV2a or saline and challenged with PCV2a or PCV2b. In Study B, pigs were vaccinated with cPCV2a, cPCV2a-cPCV2b bivalent, or saline, and challenged with PCV2a. In Study C, pigs were vaccinated with cPCV2b, cPCV2a-cPCV2b bivalent, or saline, and challenged with PCV2b. In all studies vaccines and saline were administered intramuscularly to pigs at three to four weeks of age. Virulent PCV2b or PCV2a was administered to all animals approximately three weeks post-vaccination. Both mono and bivalent vaccinated groups demonstrated significantly lower viremia, percent of animals ever viremic, percent of animals with lymphoid depletion and/or histiocytic replacement, and percent of animals with PCV2 colonization of lymphoid tissues compared to saline controls. In Study A, a biologically relevant, though not significantly different, improvement in homologous versus heterologous protection was observed. In Studies B and C, biologically superior efficacy of the bivalent cPCV2a-cPCV2b vaccine compared to either monovalent vaccine was demonstrated. Taken together, cross-protection among mismatched PCV2 vaccine and challenge genotypes is not 100%; a bivalent PCV2 vaccine may provide the best opportunity to broaden coverage to circulating strains of PCV2.


Asunto(s)
Infecciones por Circoviridae , Circovirus , Enfermedades de los Porcinos , Vacunas Virales , Animales , Anticuerpos Antivirales , Infecciones por Circoviridae/prevención & control , Infecciones por Circoviridae/veterinaria , Circovirus/genética , Porcinos
5.
Vaccine ; 39(39): 5615-5625, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34420789

RESUMEN

Porcine Circovirus type 2 (PCV2) associated disease is one of the most economically important swine diseases worldwide. Vaccines reduce PCV2 disease by inducing humoral immunity (neutralizing antibodies) and cell-mediated immunity (CMI) but may be improved by optimizing the immune response they induce. This study evaluated immune responses to a trivalent inactivated Porcine Circovirus (PCV) Type 1-Type 2a chimera (cPCV2a), cPCV2b and Mycoplasma hyopneumoniae (MH) (an experimental serial of Fostera® Gold PCV MH, also marketed as Circomax® Myco) vaccine or a bivalent recombinant PCV2a baculovirus expressed ORF2 capsid plus MH vaccine (Circumvent® PCV-M G2). Treatment Groups (T) received two doses of placebo (T01), one full or two split doses of the trivalent vaccine (T02, T03) or two split doses of the bivalent vaccine (T04) where two doses were given, there was a three-week period between administrations. All pigs were challenged with a virulent field isolate of PCV2d. CMI was measured as PCV2-specific IFN-γ secreting cells in blood and lymph node. Humoral immunity was measured as PCV2 antibodies. Vaccine efficacy was determined as viremia and fecal shedding of virus. There was a robust antibody response in T02 and T04 post the second vaccination and all vaccinated groups post challenge. There was a robust PCV2-specific IFN-γ response following the 1st dose in T02 and T03 and after the second dose in T02. T04 induced a low but detectable PCV2-specific IFN-γ response only after the 2nd dose. Among lymph node cells (study day 52), there was a significantly higher PCV2-specific, IFN-γ response to replicase and PCV2d capsid peptides in T01, consistent with active viral replication in non-vaccinated pigs. The trivalent chimeric vaccine induced robust CMI and protective efficacy, following a one dose regimen or splitting the dose into two vaccine administrations.


Asunto(s)
Infecciones por Circoviridae , Circovirus , Enfermedades de los Porcinos , Vacunas Virales , Animales , Anticuerpos Antivirales , Infecciones por Circoviridae/prevención & control , Infecciones por Circoviridae/veterinaria , Inmunidad Humoral , Porcinos , Enfermedades de los Porcinos/prevención & control , Vacunación
6.
Vaccines (Basel) ; 9(8)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34451959

RESUMEN

Porcine circovirus type 2 (PCV2) and Mycoplasma hyopneumoniae (Mhyo) are important swine pathogens for which vaccination is a key control strategy. Three separate studies were performed to evaluate the duration of immunity (DOI) conferred by a novel vaccine combining PCV2a/PCV2b and Mhyo into a ready-to-use formulation. In each study, three-week-old naïve piglets were vaccinated (Day 0) and challenged 23-weeks later (Day 159) with either PCV2a, PCV2b or Mhyo. Pigs were euthanized three-to-four-weeks post-challenge. Vaccinated pigs had significantly lower PCV2 viremia from Day 168 until Day 175 (PCV2a study) or until euthanasia (PCV2b study), respectively. Fecal shedding was significantly lower for PCV2a-challenged from Day 171 until Day 178, and for PCV2b-challenged from Day 172 until euthanasia. In the PCV2a challenge study, there were no differences among vaccinates and controls in terms of percent of pigs positive for PCV2 immunohistochemistry, histiocytic replacement, or lymphoid depletion. However, significant differences for immunohistochemistry and histiocytic replacement, not lymphoid depletion, were observed among vaccinates and controls following PCV2b challenge. Vaccination supposed a significant reduction in the mean percentage of Mhyo-like lesions in the lung. Percentages of lung tissues positive for Mhyo via immunohistochemistry were 49.3% and 67.1% for vaccinated and control groups, respectively. One dose of the novel PCV2a/PCV2b/Mhyo vaccine conferred robust protection against challenge 23-weeks later for all three fractions.

7.
Vet Immunol Immunopathol ; 223: 110034, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32278900

RESUMEN

Porcine circovirus type 2 (PCV2) has one of the highest evolutionary rates among DNA viruses. Traditionally, PCV2 vaccines have been based on the 2a genotype as this was the first genotype discovered. Today, eight genotypes of PCV2 viruses have been identified, and, taken together with the rapid evolutionary rate, propensity to recombine, and high rate of vaccination, further variation in PCV2 is expected. For these reasons, there is a growing genetic gap between available vaccines and field strains. When selecting vaccines, it is important to consider vaccines that contain T cell epitopes that are well-matched to the circulating strains. To quantify the relatedness between PCV2 vaccines and field strains, we predicted and compared their T cell epitope content and calculated Epitope Content Comparison (EpiCC) scores using established in silico tools. T cell epitopes predicted to bind common class I and class II swine leukocyte antigen (SLA) alleles were identified from two major structural proteins, the capsid (encoded by ORF2) and the replicase (encoded by ORF1). The T cell epitope content of three commercial PCV2a-based vaccines (a baculovirus expressed PCV2a ORF2 [VacAlt], a PCV1-PCV2a chimeric virus vaccine [VacA] and a combination cPCV2a-cPCV2b chimeric virus vaccine [VacAB]) and an experimental PCV2b ORF2-based chimeric virus vaccine [VacB] (Table 1), were compared to that of 161 PCV2 field strains (representing genotypes a-f). The T cell epitope content and conservation between vaccine and field strains varied. While all vaccine strains provided broad coverage of the field strains including heterologous genotypes, none of the vaccines covered all the putative T cell epitopes identified in the field strains. PCV2a-based vaccine strains generally scored higher in terms of conserved epitope content against PCV2a field isolates but were not identical. The PCV2b-based vaccine strain had higher scores against PCV2b and PCV2d field strains. The combination PCV2a-PCV2b vaccine (VacAB) had, on average, the highest EpiCC score. PCV2 continues to evolve and EpiCC analysis provides a new tool to assess the possible impact of virus genetic divergence on T cell epitope coverage of vaccine strains. Given that multiple genotypes are currently found and may co-exist on farms, this analysis suggests that a combination of PCV2a and PCV2b vaccine strains may be required to provide optimal coverage of current and future field isolates.


Asunto(s)
Infecciones por Circoviridae/veterinaria , Circovirus/inmunología , Epítopos de Linfocito T/genética , Vacunas Virales/genética , Vacunas Virales/inmunología , Animales , Anticuerpos Antivirales/inmunología , Proteínas de la Cápside/inmunología , Infecciones por Circoviridae/prevención & control , Circovirus/genética , Simulación por Computador , Epítopos de Linfocito T/inmunología , Genotipo , Inmunidad Celular , Porcinos , Enfermedades de los Porcinos/inmunología
8.
BMC Vet Res ; 10: 124, 2014 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-24903770

RESUMEN

BACKGROUND: Passively acquired maternal derived immunity (MDI) is a double-edged sword. Maternal derived antibody-mediated immunity (AMI) and cell-mediated immunity (CMI) are critical immediate defenses for the neonate; however, MDI may interfere with the induction of active immunity in the neonate, i.e. passive interference. The effect of antigen-specific MDI on vaccine-induced AMI and CMI responses to Mycoplasma hyopneumoniae (M. hyopneumoniae) was assessed in neonatal piglets. To determine whether CMI and AMI responses could be induced in piglets with MDI, piglets with high and low levels of maternal M. hyopneumoniae-specific immunity were vaccinated against M. hyopneumoniae at 7 d of age. Piglet M. hyopneumoniae-specific antibody, lymphoproliferation, and delayed type hypersensitivity (DTH) responses were measured 7 d and 14 d post vaccination. RESULTS: Piglets with M. hyopneumoniae-specific MDI failed to show vaccine-induced AMI responses; there was no rise in M. hyopneumoniae antibody levels following vaccination of piglets in the presence of M. hyopneumoniae-specific MDI. However, piglets with M. hyopneumoniae-specific MDI had primary (antigen-specific lymphoproliferation) and secondary (DTH) M. hyopneumoniae-specific CMI responses following vaccination. CONCLUSIONS: In this study neonatal M. hyopneumoniae-specific CMI was not subject to passive interference by MDI. Further, it appears that both maternal derived and endogenous CMI contribute to M. hyopneumoniae-specific CMI responses in piglets vaccinated in the face of MDI.


Asunto(s)
Vacunas Bacterianas/inmunología , Inmunidad Materno-Adquirida , Mycoplasma hyopneumoniae/inmunología , Neumonía Porcina por Mycoplasma/prevención & control , Enfermedades de los Porcinos/prevención & control , Animales , Animales Recién Nacidos , Femenino , Inmunidad Celular/fisiología , Neumonía Porcina por Mycoplasma/inmunología , Embarazo , Porcinos , Enfermedades de los Porcinos/inmunología
9.
Dev Comp Immunol ; 43(1): 114-20, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24252519

RESUMEN

Immunoglobulins and immune cells are critical components of colostral immunity; however, their transfer to and function in the neonate, especially maternal lymphocytes, is unclear. Cell-mediated and antibody-mediated immunity in sow blood and colostrum and piglet blood before (PS) and after (AS) suckling were assessed to investigate transfer and function of maternal immunity in the piglet. CD4, CD8, and γδ lymphocytes were found in sow blood and colostrum and piglet blood PS and AS; each had a unique T lymphocyte profile. Immunoglobulins were detected in sow blood, colostrum, and in piglet blood AS; the immunoglobulin profile of piglet serum AS mimicked that of sow serum. These results suggest selectivity in lymphocyte concentration into colostrum and subsequent lymphocyte transfer into the neonate, but that immunoglobulin transfer is unimpeded. Assessment of colostral natural killer activity and antigen-specific proliferation revealed that colostral cells are capable of influencing the innate and specific immune response of neonatal pigs.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Calostro/inmunología , Inmunoglobulinas/metabolismo , Células Asesinas Naturales/inmunología , Porcinos/inmunología , Inmunidad Adaptativa , Animales , Animales Recién Nacidos , Animales Lactantes , Antígenos/inmunología , Linfocitos T CD8-positivos , Proliferación Celular , Células Cultivadas , Femenino , Inmunidad Celular , Inmunidad Humoral , Inmunidad Innata , Inmunidad Materno-Adquirida , Embarazo , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo
10.
Trends Microbiol ; 21(3): 114-9, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23473629

RESUMEN

Alternatives to antibiotics are urgently needed in animal agriculture. The form these alternatives should take presents a complex problem due to the various uses of antibiotics in animal agriculture, including disease treatment, disease prevention, and growth promotion, and to the relative contribution of these uses to the antibiotic resistance problem. Numerous antibiotic alternatives, such as pre- and probiotics, have been proposed but show variable success. This is because a fundamental understanding of how antibiotics improve feed efficiency is lacking, and because an individual alternative is unlikely to embody all of the performance-enhancing functions of antibiotics. High-throughput technologies need to be applied to better understand the problem, and informed combinations of alternatives, including vaccines, need to be considered.


Asunto(s)
Crianza de Animales Domésticos/métodos , Antibacterianos/uso terapéutico , Infecciones Bacterianas/tratamiento farmacológico , Farmacorresistencia Bacteriana , Sustancias de Crecimiento/uso terapéutico , Medicina Veterinaria/métodos , Animales , Infecciones Bacterianas/microbiología , Infecciones Bacterianas/prevención & control
11.
Clin Vaccine Immunol ; 15(3): 540-3, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18184823

RESUMEN

Immunity in the neonatal animal is primarily maternally derived, either by lymphocytes that pass into the newborn across the placenta or following colostrum ingestion. However, the effect of this passively transferred cellular maternal immunity on the newborn's immune repertoire is not clearly understood. Various studies have shown that colostral lymphocytes are activated and possess functional abilities; however, no studies have shown the transfer of colostral antigen-specific T-cell-specific responses in a newborn. In this study we examined the transfer of vaccine-induced Mycoplasma hyopneumoniae cellular immunity from immune dams to newborn piglets. Newborn piglets from vaccinated and nonvaccinated dams were assessed in two ways for cellular immune responses specific to M. hyopneumoniae: (i) delayed-type hypersensitivity (DTH) testing and (ii) in vitro lymphocyte proliferation, assayed on piglet blood lymphocytes and sow colostral lymphocytes. DTH responses to M. hyopneumoniae were detected only for offspring of vaccinated sows, whereas DTH responses to the nonspecific mitogen phytohemagglutinin were seen for all piglets. M. hyopneumoniae-specific proliferation was seen for colostral lymphocytes from vaccinated sows and for blood lymphocytes from neonatal piglets of vaccinated dams but not for blood lymphocytes from piglets of nonvaccinated sows. Functional antigen-specific T cells were transferred to offspring from vaccinated sows and participated in the neonatal immune response upon stimulation. These data have implications for defining disease intervention strategies.


Asunto(s)
Inmunidad Materno-Adquirida , Mycoplasma hyopneumoniae/inmunología , Neumonía Porcina por Mycoplasma/microbiología , Enfermedades de los Porcinos/inmunología , Linfocitos T/inmunología , Animales , Animales Recién Nacidos , Calostro/inmunología , Femenino , Hipersensibilidad Tardía/inmunología , Activación de Linfocitos , Neumonía Porcina por Mycoplasma/inmunología , Neumonía Porcina por Mycoplasma/prevención & control , Embarazo , Porcinos , Enfermedades de los Porcinos/microbiología , Enfermedades de los Porcinos/prevención & control , Vacunación/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...