Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Shock ; 59(3): 393-399, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36597771

RESUMEN

ABSTRACT: Introduction: Despite significant advances in pediatric burn care, bloodstream infections (BSIs) remain a compelling challenge during recovery. A personalized medicine approach for accurate prediction of BSIs before they occur would contribute to prevention efforts and improve patient outcomes. Methods: We analyzed the blood transcriptome of severely burned (total burn surface area [TBSA] ≥20%) patients in the multicenter Inflammation and Host Response to Injury ("Glue Grant") cohort. Our study included 82 pediatric (aged <16 years) patients, with blood samples at least 3 days before the observed BSI episode. We applied the least absolute shrinkage and selection operator (LASSO) machine-learning algorithm to select a panel of biomarkers predictive of BSI outcome. Results: We developed a panel of 10 probe sets corresponding to six annotated genes ( ARG2 [ arginase 2 ], CPT1A [ carnitine palmitoyltransferase 1A ], FYB [ FYN binding protein ], ITCH [ itchy E3 ubiquitin protein ligase ], MACF1 [ microtubule actin crosslinking factor 1 ], and SSH2 [ slingshot protein phosphatase 2 ]), two uncharacterized ( LOC101928635 , LOC101929599 ), and two unannotated regions. Our multibiomarker panel model yielded highly accurate prediction (area under the receiver operating characteristic curve, 0.938; 95% confidence interval [CI], 0.881-0.981) compared with models with TBSA (0.708; 95% CI, 0.588-0.824) or TBSA and inhalation injury status (0.792; 95% CI, 0.676-0.892). A model combining the multibiomarker panel with TBSA and inhalation injury status further improved prediction (0.978; 95% CI, 0.941-1.000). Conclusions: The multibiomarker panel model yielded a highly accurate prediction of BSIs before their onset. Knowing patients' risk profile early will guide clinicians to take rapid preventive measures for limiting infections, promote antibiotic stewardship that may aid in alleviating the current antibiotic resistance crisis, shorten hospital length of stay and burden on health care resources, reduce health care costs, and significantly improve patients' outcomes. In addition, the biomarkers' identity and molecular functions may contribute to developing novel preventive interventions.


Asunto(s)
Quemaduras , Sepsis , Humanos , Niño , Estudios Retrospectivos , Tiempo de Internación , Inflamación
2.
Arch Microbiol ; 203(6): 2895-2910, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33763767

RESUMEN

Increasing incidences of neurological disorders, such as Parkinson's disease (PD), multiple sclerosis (MS), Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS) are being reported, but an insight into their pathology remains elusive. Findings have suggested that gut microbiota play a major role in regulating brain functions through the gut-brain axis. A unique bidirectional communication between gut microbiota and maintenance of brain health could play a pivotal role in regulating incidences of neurodegenerative diseases. Contrarily, the present life style with changing food habits and disturbed circadian rhythm may contribute to gut homeostatic imbalance and dysbiosis leading to progression of several neurological disorders. Therefore, dysbiosis, as a primary factor behind intestinal disorders, may also augment inflammation, intestinal and blood-brain barrier permeability through microbiota-gut-brain axis. This review primarily focuses on the gut-brain axis functions, specific gut microbial population, metabolites produced by gut microbiota, their role in regulating various metabolic processes and role of gut microbiota towards development of neurodegenerative diseases. However, several studies have reported a decrease in abundance of a specific gut microbial population and a corresponding increase in other microbial family, with few findings revealing some contradictions. Reports also showed that colonization of gut microbiota isolated from patients suffering from neurodegenerative disease leads to the development of enhance pathological outcomes in animal models. Hence, a systematic understanding of the dominant role of specific gut microbiome towards development of different neurodegenerative diseases could possibly provide novel insight into the use of probiotics and microbial transplantation as a substitute approach for treating/preventing such health maladies.


Asunto(s)
Encéfalo/fisiología , Microbioma Gastrointestinal/fisiología , Enfermedades Neurodegenerativas/etiología , Animales , Humanos
3.
Environ Toxicol Pharmacol ; 80: 103483, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32866630

RESUMEN

Bisphenol A (BPA), a well-recognized anthropogenic xenoestrogen, has been identified as a causative agent responsible for inducing carcinogenicity, cognitive impairment, neurotoxicity, oxidative stress, etc. However, BPA-induced neurotoxicity and its possible amelioration through natural compound intervention remain elusive. The current study was performed to elucidate the neurotoxic potential of BPA in zebrafish (Danio rerio) by waterborne exposure and its possible amelioration by quercetin co-supplementation. Protective effect of quercetin against BPA-induced altered neurobehavioral response, oxidative stress and neuromorphological changes were evaluated in zebrafish brain. The present findings reveal that BPA-induced altered neurobehavioral response was ameliorated by quercetin. Biochemical studies advocate the potential therapeutic efficacy of quercetin against BPA-induced oxidative stress in zebrafish brain. Quercetin also shows neuroprotection against BPA-induced augmented neuronal pyknosis in periventricular grey zone (PGZ) of zebrafish brain. These basic findings indicate that quercetin may act as an effective intervention against BPA-induced neurotoxicity in zebrafish through down-regulation of oxidative stress.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Encéfalo/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Síndromes de Neurotoxicidad/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Fenoles/toxicidad , Quercetina/uso terapéutico , Animales , Conducta Animal/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Catalasa/metabolismo , Femenino , Glutatión/metabolismo , Glutatión Reductasa/metabolismo , Glutatión Transferasa/metabolismo , Masculino , Fármacos Neuroprotectores/farmacología , Síndromes de Neurotoxicidad/metabolismo , Síndromes de Neurotoxicidad/patología , Quercetina/farmacología , Superóxido Dismutasa/metabolismo , Pez Cebra
4.
Bioorg Med Chem Lett ; 25(13): 2694-7, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25981687

RESUMEN

Drug resistant infections are becoming common worldwide and new strategies for drug development are necessary. Here, we report the synthesis and evaluation of 2,4-dinitrophenylsulfonamides, which are donors of sulfur dioxide (SO2), a reactive sulfur species, as methicillin-resistant Staphylococcus aureus (MRSA) inhibitors. N-(3-Methoxyphenyl)-2,4-dinitro-N-(prop-2-yn-1-yl)benzenesulfonamide (5e) was found to have excellent in vitro MRSA inhibitory potency. This compound is cell permeable and treatment of MRSA cells with 5e depleted intracellular thiols and enhanced oxidative species both results consistent with a mechanism involving thiol activation to produce SO2.


Asunto(s)
Antibacterianos/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Profármacos/farmacología , Dióxido de Azufre/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Diseño de Fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Profármacos/síntesis química , Profármacos/química , Infecciones Estafilocócicas/tratamiento farmacológico , Relación Estructura-Actividad , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/farmacología , Dióxido de Azufre/química
5.
ACS Med Chem Lett ; 5(7): 777-81, 2014 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-25050164

RESUMEN

The number of cases of drug resistant Staphylococcus aureus infections is on the rise globally and new strategies to identify drug candidates with novel mechanisms of action are in urgent need. Here, we report the synthesis and evaluation of a series of benzo[b]phenanthridine-5,7,12(6H)-triones, which were designed based on redox-active natural products. We find that the in vitro inhibitory activity of 6-(prop-2-ynyl)benzo[b]phenanthridine-5,7,12(6H)-trione (1f) against methicillin-resistant Staphylococcus aureus (MRSA), including a panel of patient-derived strains, is comparable or better than vancomycin. We show that the lead compound generates reactive oxygen species (ROS) in the cell, contributing to its antibacterial activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...