Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuropharmacology ; 248: 109889, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38401792

RESUMEN

Autism spectrum disorders (ASD) are complex neurodevelopmental disorders characterized by deficient social communication and interaction together with restricted, stereotyped behaviors. Currently approved treatments relieve comorbidities rather than core symptoms. Since excitation/inhibition balance and synaptic plasticity are disrupted in ASD, molecules targeting excitatory synaptic transmission appear as highly promising candidates to treat this pathology. Among glutamatergic receptors, the NMDA receptor has received particular attention through the last decade to develop novel allosteric modulators. Here, we show that positive NMDA receptor modulation by zelquistinel, a spirocyclic ß-lactam platform chemical, relieves core symptoms in two genetic and one environmental mouse models of ASD. A single oral dose of zelquistinel rescued, in a dose-response manner, social deficits and stereotypic behavior in Shank3Δex13-16-/- mice while chronic intraperitoneal administration promoted a long-lasting relief of such autistic-like features in these mice. Subchronic oral mid-dose zelquistinel treatment demonstrated durable effects in Shank3Δex13-16-/-, Fmr1-/- and in utero valproate-exposed mice. Carry-over effects were best maintained in the Fmr1 null mouse model, with social parameters being still fully recovered two weeks after treatment withdrawal. Among recently developed NMDA receptor subunit modulators, zelquistinel displays a promising therapeutic potential to relieve core symptoms in ASD patients, with oral bioavailability and long-lasting effects boding well for clinical applications. Efficacy in three mouse models with different etiologies supports high translational value. Further, this compound represents an innovative pharmacological tool to investigate plasticity mechanisms underlying behavioral deficits in animal models of ASD.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Ratones , Humanos , Animales , Trastorno del Espectro Autista/tratamiento farmacológico , Trastorno del Espectro Autista/genética , Receptores de N-Metil-D-Aspartato , Conducta Estereotipada , Ratones Noqueados , Modelos Animales de Enfermedad , Proteínas de Microfilamentos , Proteínas del Tejido Nervioso , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil
2.
Cephalalgia ; 44(1): 3331024231226186, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38215228

RESUMEN

BACKGROUND: The trigeminal sensory neuropeptide calcitonin gene-related peptide (CGRP) is identified as an essential element in migraine pathogenesis. METHODS: In vitro and in vivo studies evaluated pharmacologic properties of the CGRP receptor antagonist atogepant. Radioligand binding using 125I-CGRP and cyclic adenosine monophosphate (cAMP) accumulation assays were conducted in human embryonic kidney 293 cells to assess affinity, functional potency and selectivity. Atogepant in vivo potency was assessed in the rat nitroglycerine model of facial allodynia and primate capsaicin-induced dermal vasodilation (CIDV) pharmacodynamic model. Cerebrospinal fluid/brain penetration and behavioral effects of chronic dosing and upon withdrawal were evaluated in rats. RESULTS: Atogepant exhibited high human CGRP receptor-binding affinity and potently inhibited human α-CGRP-stimulated cAMP responses. Atogepant exhibited significant affinity for the amylin1 receptor but lacked appreciable affinities for adrenomedullin, calcitonin and other known neurotransmitter receptor targets. Atogepant dose-dependently inhibited facial allodynia in the rat nitroglycerine model and produced significant CIDV inhibition in primates. Brain penetration and behavioral/physical signs during chronic dosing and abrupt withdrawal were minimal in rats. CONCLUSIONS: Atogepant is a competitive antagonist with high affinity, potency and selectivity for the human CGRP receptor. Atogepant demonstrated a potent, concentration-dependent exposure/efficacy relationship between atogepant plasma concentrations and inhibition of CGRP-dependent effects.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Piperidinas , Piridinas , Pirroles , Receptores de Péptido Relacionado con el Gen de Calcitonina , Compuestos de Espiro , Humanos , Ratas , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Receptores de Péptido Relacionado con el Gen de Calcitonina/metabolismo , Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina/farmacología , Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina/uso terapéutico , Hiperalgesia/tratamiento farmacológico
3.
Behav Brain Res ; 432: 113964, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-35718230

RESUMEN

Rapastinel, a positive N-methyl-D-aspartate receptor (NMDAR) modulator with rapid-acting antidepressant properties, rescues memory deficits in rodents. We have previously reported that a single intravenous dose of rapastinel, significantly, but only transiently, prevented and rescued deficits in the novel object recognition (NOR) test, a measure of episodic memory, produced by acute or subchronic administration of the NMDAR antagonists, phencyclidine (PCP) and ketamine. Here, we tested the ability of single and multiple subcutaneous doses per day of rapastinel to restore NOR and operant reversal learning (ORL) deficits in subchronic PCP-treated mice. Rapastinel, 1 or 3 mg/kg, administered subcutaneously, 30 min before NOR or ORL testing, respectively, transiently rescued both deficits in subchronic PCP mice. This effect of rapastinel on NOR and ORL was mammalian target of rapamycin (mTOR)-dependent. Most importantly, 1 mg/kg rapastinel given twice daily for 3 or 5 days, but not 1 day, restored NOR for at least 9 and 10 weeks, respectively, which is an indication of neuroplastic effects on learning and memory. Both rapastinel (3 mg/kg) and ketamine (30 mg/kg), moderately increased the efflux of dopamine, norepinephrine, and serotonin in medial prefrontal cortex; however, only ketamine increased cortical glutamate efflux. This observation was likely the basis for the contrasting effects of the two drugs on cognition.


Asunto(s)
Ketamina , Fenciclidina , Animales , Ketamina/farmacología , Ketamina/uso terapéutico , Mamíferos , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Ratones , Oligopéptidos/farmacología , Fenciclidina/farmacología
4.
Mol Psychiatry ; 26(9): 5097-5111, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-32488125

RESUMEN

Both the NMDA receptor (NMDAR) positive allosteric modulator (PAM), and antagonist, can exert rapid antidepressant effects as shown in several animal and human studies. However, how this bidirectional modulation of NMDARs causes similar antidepressant effects remains unknown. Notably, the initial cellular trigger, specific cell-type(s), and subunit(s) of NMDARs mediating the antidepressant-like effects of a PAM or an antagonist have not been identified. Here, we used electrophysiology, microdialysis, and NMR spectroscopy to evaluate the effect of a NMDAR PAM (rapastinel) or NMDAR antagonist, ketamine on NMDAR function and disinhibition-mediated glutamate release. Further, we used cell-type specific knockdown (KD), pharmacological, and behavioral approaches to dissect the cell-type specific role of GluN2B, GluN2A, and dopamine receptor subunits in the actions of NMDAR PAM vs. antagonists. We demonstrate that rapastinel directly enhances NMDAR activity on principal glutamatergic neurons in medial prefrontal cortex (mPFC) without any effect on glutamate efflux, while ketamine blocks NMDAR on GABA interneurons to cause glutamate efflux and indirect activation of excitatory synapses. Behavioral studies using cell-type-specific KD in mPFC demonstrate that NMDAR-GluN2B KD on Camk2a- but not Gad1-expressing neurons blocks the antidepressant effects of rapastinel. In contrast, GluN2B KD on Gad1- but not Camk2a-expressing neurons blocks the actions of ketamine. The results also demonstrate that Drd1-expressing pyramidal neurons in mPFC mediate the rapid antidepressant actions of ketamine and rapastinel. Together, these results demonstrate unique initial cellular triggers as well as converging effects on Drd1-pyramidal cell signaling that underlie the antidepressant actions of NMDAR-positive modulation vs. NMDAR blockade.


Asunto(s)
Ketamina , Receptores de N-Metil-D-Aspartato , Animales , Antidepresivos/farmacología , Humanos , Interneuronas/metabolismo , Ketamina/farmacología , Corteza Prefrontal/metabolismo , Células Piramidales/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
5.
Neuropsychopharmacology ; 46(4): 799-808, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33059355

RESUMEN

Dysregulation of the glutamatergic system and its receptors in medial prefrontal cortex (mPFC) has been implicated in major depressive disorder. Recent preclinical studies have shown that enhancing NMDA receptor (NMDAR) activity can exert rapid antidepressant-like effects. AGN-241751, an NMDAR positive allosteric modulator (PAM), is currently being tested as an antidepressant in clinical trials, but the mechanism and NMDAR subunit(s) mediating its antidepressant-like effects are unknown. We therefore used molecular, biochemical, and electrophysiological approaches to examine the cell-type-specific role of GluN2B-containing NMDAR in mediating antidepressant-like behavioral effects of AGN-241751. We demonstrate that AGN-241751 exerts antidepressant-like effects and reverses behavioral deficits induced by chronic unpredictable stress in mice. AGN-241751 treatment enhances NMDAR activity of excitatory and parvalbumin-inhibitory neurons in mPFC, activates Akt/mTOR signaling, and increases levels of synaptic proteins crucial for synaptic plasticity in the prefrontal cortex. Furthermore, cell-type-specific knockdown of GluN2B-containing NMDARs in mPFC demonstrates that GluN2B subunits on excitatory, but not inhibitory, neurons are necessary for antidepressant-like effects of AGN-241751. Together, these results demonstrate antidepressant-like actions of the NMDAR PAM AGN-241751 and identify GluN2B on excitatory neurons of mPFC as initial cellular trigger underlying these behavioral effects.


Asunto(s)
Trastorno Depresivo Mayor , Receptores de N-Metil-D-Aspartato , Animales , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Trastorno Depresivo Mayor/tratamiento farmacológico , Ratones , Neuronas/metabolismo , Corteza Prefrontal/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
6.
Cephalalgia ; 40(9): 892-902, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32615788

RESUMEN

BACKGROUND: Ubrogepant, a small-molecule calcitonin gene-related peptide receptor antagonist, was recently approved as an oral medication for the acute treatment of migraine. This study aimed to determine whether ubrogepant shows efficacy in a preclinical model of migraine-like pain and whether repeated oral administration of ubrogepant induces latent sensitization relevant to medication overuse headache in rats. METHODS: A "two-hit" priming model of medication overuse headache was used. Female Sprague-Dawley rats received six oral doses of sumatriptan 10 mg/kg over 2 weeks to induce latent sensitization (i.e. "priming"). Cutaneous allodynia was measured periodically over 20 days in the periorbital and hindpaw regions using von Frey filaments. The rats were then subjected to a 1-hour bright light stress challenge on two consecutive days. At the start of the second bright light stress exposure, oral sumatriptan 10 mg/kg, oral ubrogepant 25, 50, or 100 mg/kg, or vehicle was administered; thereafter, cephalic and hindpaw sensory thresholds were monitored hourly over 5 hours to determine the efficacy of ubrogepant in reversing bright light stress-induced cutaneous allodynia. A dose of ubrogepant effective in the medication overuse headache model (100 mg/kg) was then selected to determine if repeated administration would produce latent sensitization. Rats were administered six oral doses of ubrogepant 100 mg/kg, sumatriptan 10 mg/kg (positive control), or vehicle over 2 weeks, and cutaneous allodynia was evaluated regularly. Testing continued until mechanosensitivity returned to baseline levels. Rats were then challenged with bright light stress on days 20 and 21, and periorbital and hindpaw cutaneous allodynia was measured. On days 28 to 32, the same groups received a nitric oxide donor (sodium nitroprusside 3 mg/kg, i.p.), and cutaneous allodynia was assessed hourly over 5 hours. RESULTS: Sumatriptan elicited cutaneous allodynia in both cephalic and hindpaw regions; cutaneous allodynia resolved to baseline levels after cessation of drug administration (14 days). Sumatriptan priming resulted in generalized and delayed cutaneous allodynia, evoked by either bright light stress (day 21) or nitric oxide donor (day 28). Ubrogepant dose-dependently blocked both stress- and nitric oxide donor-induced cephalic and hindpaw allodynia in the sumatriptan-induced medication overuse headache model with a 50% effective dose of ∼50 mg/kg. Unlike sumatriptan, ubrogepant 100 mg/kg in repeated effective doses did not produce cutaneous allodynia or latent sensitization. CONCLUSIONS: Both ubrogepant and sumatriptan demonstrated efficacy as acute medications for stress- and nitric oxide donor-evoked cephalic allodynia in a preclinical model of medication overuse headache, consistent with their clinical efficacy in the acute treatment of migraine. However, in contrast to sumatriptan, repeated treatment with ubrogepant did not induce cutaneous allodynia or latent sensitization. These studies suggest ubrogepant may offer an effective acute treatment of migraine without risk of medication overuse headache.Trial Registration Number: Not applicable.


Asunto(s)
Analgésicos/farmacología , Sensibilización del Sistema Nervioso Central/efectos de los fármacos , Cefaleas Secundarias , Hiperalgesia/inducido químicamente , Piridinas/farmacología , Pirroles/farmacología , Animales , Modelos Animales de Enfermedad , Femenino , Ratas , Ratas Sprague-Dawley , Sumatriptán/farmacología
7.
Behav Brain Res ; 391: 112706, 2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32461133

RESUMEN

Rapastinel, a positive NMDAR modulator, produces rapid-acting and long-lasting antidepressant-like effects; however, unlike ketamine, the abuse potential for rapastinel is minimal. Ketamine has also been shown to induce psychotomimetic/dissociative side effects, aberrant gamma oscillations, and effects similar to sleep deprivation, which may potentially limit its clinical use. In this study, we compared the side effect profile and potential sleep-altering properties of rapastinel (3, 10, and 30 mg/kg) to ketamine (30 mg/kg) in rodents. In addition, we investigated corresponding changes in transcriptomics and proteomics. Rapastinel exhibited no effect on locomotor activity and prepulse inhibition in mice, while ketamine induced a significant increase in locomotor activity and a significant decrease in prepulse inhibition, which are indications of a psychosis-like state. The effects of rapastinel on sleep architecture were minimal, and rapastinel did not alter gamma frequency oscillations. In contrast, ketamine administration resulted in a greater latency to slow wave and REM sleep, disrupted duration of sleep, and affected duration of wakefulness during sleep. Further, ketamine increased cortical oscillations in the gamma frequency range, which is a property associated with psychosis. Rapastinel induced similar plasticity-related changes in transcriptomics to ketamine in rats but differed in several gene ontology classes, some of which may be involved in the regulation of sleep. In conclusion, rapastinel demonstrated a lower propensity than ketamine to induce CNS-related adverse side effects and sleep disturbances.


Asunto(s)
Oligopéptidos/farmacología , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Sueño/efectos de los fármacos , Animales , Antidepresivos/farmacología , Conducta Animal/efectos de los fármacos , Depresión/tratamiento farmacológico , Electroencefalografía/efectos de los fármacos , Electroencefalografía/métodos , Antagonistas de Aminoácidos Excitadores/farmacología , Ketamina/metabolismo , Ketamina/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Oligopéptidos/metabolismo , Inhibición Prepulso/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Sueño/fisiología , Vigilia/efectos de los fármacos , Vigilia/fisiología
9.
J Pharmacol Exp Ther ; 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31992609

RESUMEN

A growing body of evidence has implicated the calcitonin gene-related peptide (CGRP) receptors in migraine pathophysiology. With the recent approval of monoclonal antibodies targeting CGRP or the CGRP receptor, the inhibition of CGRP-mediated signaling has emerged as a promising approach for preventive treatments of migraine in adults. However, there are no small-molecule anti-CGRP treatments available for treating migraine. The current studies aimed to characterize the pharmacologic properties of ubrogepant, an orally bioavailable, CGRP receptor antagonist for the acute treatment of migraine. In a series of ligand binding assays, ubrogepant exhibited a high binding affinity for native (K i=0.067 nM) and cloned human (K i=0.070 nM) and rhesus CGRP receptors (K i=0.079 nM), with relatively lower affinities for CGRP receptors from rat, mouse, rabbit and dog. In functional assays, ubrogepant potently blocked human α-CGRP stimulated cAMP response (IC50 of 0.08 nM) and exhibited highly selective antagonist activity for the CGRP receptor compared with other members of the human calcitonin receptor family. Furthermore, the in vivo CGRP receptor antagonist activity of ubrogepant was evaluated in a pharmacodynamic model of capsaicin-induced dermal vasodilation (CIDV) in rhesus monkeys and humans. Results demonstrated that ubrogepant produced concentration-dependent inhibition of CIDV with a mean EC50 of 3.2 and 2.6 nM in rhesus monkeys and humans, respectively. Brain penetration studies with ubrogepant in monkeys showed a CSF/plasma ratio of 0.03 and low CGRP receptor occupancy. In summary, ubrogepant is a competitive antagonist with high affinity, potency, and selectivity for the human CGRP receptor. SIGNIFICANCE STATEMENT: Ubrogepant is a potent, selective, orally delivered, small-molecule competitive antagonist of the human calcitonin generelated peptide receptor. In vivo studies using a pharmacodynamic model of capsaicin-induced dermal vasodilation (CIDV) in rhesus monkeys and humans demonstrated that ubrogepant produced concentration-dependent inhibition of CIDV, indicating a predictable pharmacokinetic-pharmacodynamic relationship.

10.
Int J Neuropsychopharmacol ; 22(3): 247-259, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30544218

RESUMEN

BACKGROUND: Modulation of glutamatergic synaptic transmission by N-methyl-D-aspartate receptors can produce rapid and sustained antidepressant effects. Rapastinel (GLYX-13), initially described as a N-methyl-D-aspartate receptor partial glycine site agonist, exhibits rapid antidepressant effect in rodents without the accompanying dissociative effects of N-methyl-D-aspartate receptor antagonists. METHODS: The relationship between rapastinel's in vitro N-methyl-D-aspartate receptor pharmacology and antidepressant efficacy was determined by brain microdialysis and subsequent pharmacological characterization of therapeutic rapastinel concentrations in N-methyl-D-aspartate receptor-specific radioligand displacement, calcium mobilization, and medial prefrontal cortex electrophysiology assays. RESULTS: Brain rapastinel concentrations of 30 to 100 nM were associated with its antidepressant-like efficacy and enhancement of N-methyl-D-aspartate receptor-dependent neuronal intracellular calcium mobilization. Modulation of N-methyl-D-aspartate receptors by rapastinel was independent of D-serine concentrations, and glycine site antagonists did not block rapastinel's effect. In rat medial prefrontal cortex slices, 100 nM rapastinel increased N-methyl-D-aspartate receptor-mediated excitatory postsynaptic currents and enhanced the magnitude of long-term potentiation without any effect on miniature EPSCs or paired-pulse facilitation responses, indicating postsynaptic action of rapastinel. A critical amino acid within the NR2 subunit was identified as necessary for rapastinel's modulatory effect. CONCLUSION: Rapastinel brain concentrations associated with antidepressant-like activity directly enhance medial prefrontal cortex N-methyl-D-aspartate receptor activity and N-methyl-D-aspartate receptor-mediated synaptic plasticity in vitro. At therapeutic concentrations, rapastinel directly enhances N-methyl-D-aspartate receptor activity through a novel site independent of the glycine coagonist site. While both rapastinel and ketamine physically target N-methyl-D-aspartate receptors, the 2 molecules have opposing actions on N-methyl-D-aspartate receptors. Modest positive modulation of N-methyl-D-aspartate receptors by rapastinel represents a novel pharmacological approach to promote well-tolerated, rapid, and sustained improvements in mood disorders.


Asunto(s)
Antidepresivos/administración & dosificación , Antidepresivos/metabolismo , Corteza Cerebral/metabolismo , Oligopéptidos/administración & dosificación , Oligopéptidos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Células Cultivadas , Corteza Cerebral/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Agonismo Parcial de Drogas , Masculino , Microdiálisis/métodos , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/agonistas , Resultado del Tratamiento
11.
Int J Neuropsychopharmacol ; 19(10)2016 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-27352617

RESUMEN

BACKGROUND: Differences in 5-HT 1A receptor function have been implicated in vulnerability to depression and in response to treatment. Adding 5-HT 1A partial agonists to selective serotonin reuptake inhibitors has been touted as a strategy to increase their efficacy. Here we use the novelty suppressed feeding paradigm to compare the effects of vilazodone, a high-potency selective serotonin reuptake inhibitor, with high affinity for 5-HT 1A receptors to the reference selective serotonin reuptake inhibitor fluoxetine across several mouse strains that differ in their response to selective serotonin reuptake inhibitors. METHODS: To confirm 5-HT 1A agonist activity, body temperature was measured after acute administration of vilazodone or fluoxetine, as administration of 5-HT 1A agonists induces hypothermia. We next used 3 strains of mice to examine the effects of the drugs on latency in the novelty suppressed feeding, a paradigm generally sensitive to chronic but not acute effects of antidepressants. RESULTS: Vilazodone induces robust hypothermia and blocks stress-induced hyperthermia in a 5-HT 1A -dependent manner, consistent with agonist effects at 5-HT 1A autoreceptors. In 129SvEv mice, vilazodone (10mg/kg/d) reduces the latency to eat in the novelty suppressed feeding test within 8 days, while no effect of fluoxetine (20mg/kg/d) was detected at that time. In contrast, both vilazodone and fluoxetine are effective at decreasing latency to eat in the novelty suppressed feeding paradigm in a strain with low autoreceptor levels. In mice with higher autoreceptor levels, no significant difference was detected between fluoxetine and vehicle ( P=. 8) or vilazodone and vehicle ( P =.06). CONCLUSION: In mice, vilazodone may offer advantages in time of onset and efficacy over a reference selective serotonin reuptake inhibitor in the novelty suppressed feeding test.

12.
Neuropharmacology ; 107: 271-277, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27040795

RESUMEN

Vilazodone (VLZ) is a selective serotonin reuptake inhibitor (SSRI) and 5-HT1A receptor partial agonist approved for the treatment of major depressive disorder in adults. In preclinical studies, VLZ had significantly lower sexual side effects than SSRIs and reduced serotonin transporter (SERT) levels in forebrain regions. In the current study, once-daily paroxetine (PAR, 10 mg/kg), VLZ (10 mg/kg), PAR + buspirone (BUS, 3 mg/kg; a 5-HT1A partial agonist), or vehicle (VEH) was administered to male rats for 2 weeks then switched for 7 days (eg, PAR switched to VLZ, PAR + BUS, or VEH). Sexual behavior (eg, ejaculation frequency and latency) was evaluated 1-hr postdose on days 1, 7, 14, and 21. After 2 weeks, treatment with PAR but not VLZ resulted in a significant decrease in sexual behavior. In a 30-min test, the range of ejaculation frequency was 3.08-3.5 with VLZ and 1.00-1.92 with PAR (P < 0.05 vs VEH). After switching from PAR to VEH, PAR + BUS, or VEH, sexual behaviors were normalized to control levels. In contrast, the switch from VLZ to PAR resulted in reduced sexual behaviors. This preclinical study showed that unlike PAR, an SSRI with no 5-HT1A receptor activity, initial treatment with VLZ did not result in sexual side effects at therapeutically relevant doses. Results in male rats switched from PAR to VLZ or PAR + BUS strongly suggest that activation of 5-HT1A receptors may mitigate the sexual side effects associated with conventional SSRIs.


Asunto(s)
Paroxetina/farmacología , Receptor de Serotonina 5-HT1A/fisiología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Agonistas del Receptor de Serotonina 5-HT1/farmacología , Conducta Sexual Animal/efectos de los fármacos , Clorhidrato de Vilazodona/farmacología , Animales , Esquema de Medicación , Agonismo Parcial de Drogas , Femenino , Masculino , Ratas , Ratas Wistar , Conducta Sexual Animal/fisiología
13.
Expert Opin Drug Discov ; 11(5): 515-23, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26971593

RESUMEN

INTRODUCTION: Major depressive disorder (MDD) is the leading cause of disability worldwide, and according to the STAR*D trial, only 33% of patients with MDD responded to initial drug therapy. Augmentation of the leading class of antidepressant treatment, selective serotonin reuptake inhibitors (SSRIs), with the 5-HT1A receptor agonist buspirone has been shown to be effective in treating patients that do not respond to initial SSRI therapy. This suggests that newer treatments may improve the clinical picture of MDD. The US Food and Drug Administration (FDA) approved the antidepressant drug vilazodone (EMD 68843), a novel SSRI and 5-HT1A receptor partial agonist. Vilazodone has a half-life between 20-24 hours, reaches peak plasma concentrations at 3.7-5.3 hours, and is primarily metabolized by the hepatic CYP450 3A4 enzyme system. AREAS COVERED: The authors review the preclinical and clinical profile of vilazodone. The roles of serotonin, the 5-HT1A receptor, and current pharmacotherapy approaches for MDD are briefly reviewed. Next, the preclinical pharmacological, behavioral, and physiological effects of vilazodone are presented, followed by the pharmacokinetic properties and metabolism of vilazodone in humans. Last, a brief summary of the main efficacy, safety, and tolerability outcomes of clinical trials of vilazodone is provided. EXPERT OPINION: Vilazodone has shown efficacy versus placebo in improving depression symptoms in several double-blind, placebo-controlled trials. The long-term safety and tolerability of vilazodone treatment has also been established. Further studies are needed that directly compare patients treated with an SSRI (both with and without an adjunctive 5-HT1A partial agonist) versus patients treated with vilaozodone.


Asunto(s)
Antidepresivos/uso terapéutico , Trastorno Depresivo Mayor/tratamiento farmacológico , Inhibidores Selectivos de la Recaptación de Serotonina/uso terapéutico , Agonistas del Receptor de Serotonina 5-HT1/uso terapéutico , Clorhidrato de Vilazodona/uso terapéutico , Animales , Antidepresivos/farmacología , Humanos , Agonistas del Receptor de Serotonina 5-HT1/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Clorhidrato de Vilazodona/farmacología
14.
Psychopharmacology (Berl) ; 233(6): 1025-34, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26758283

RESUMEN

RATIONALE: Sexual side effects are commonly associated with selective serotonin reuptake inhibitor (SSRI) treatment. Some evidence suggest that activation of 5-HT1A receptors attenuates SSRI-induced sexual dysfunction. OBJECTIVE: This study in male rats compared the effects of vilazodone, an antidepressant with SSRI and 5-HT1A receptor partial agonist activity, with other prototypical SSRIs (citalopram and paroxetine) on sexual behaviors and 5-HT receptors (5-HT1A and 5-HT2A) and transporter (5-HTT) levels in select forebrain regions of the limbic system using quantitative autoradiography. METHODS: Rats received vilazodone (1, 3, and 10 mg/kg), citalopram (10 and 30 mg/kg), or paroxetine (10 mg/kg) treatment for 14 days. Sexual behaviors (frequency and latency of mounts, intromissions, and ejaculations) were measured in the presence of an estrous female rat on days 1 (acute), 7 (subchronic), and 14 (chronic). RESULTS: Vilazodone-treated rats exhibited no sexual dysfunction compared with controls; in contrast, the citalopram- and paroxetine-treated rats exhibited impaired copulatory and ejaculatory behaviors after subchronic and chronic treatments. Chronic vilazodone treatment markedly decreased 5-HT1A receptor levels in cortical and hippocampal regions, while the SSRIs increased levels of this receptor in similar regions. All chronic treatments reduced 5-HTT levels across the forebrain; however, the magnitude of the decrease was considerably smaller for vilazodone than for the SSRIs. CONCLUSIONS: The current studies showed that chronic treatment with vilazodone, in contrast to citalopram and paroxetine, was not associated with diminished sexual behaviors in male rats, which may be related to the differential effects of vilazodone on 5-HT1A receptor and 5-HTT levels relative to conventional SSRIs.


Asunto(s)
Encéfalo/efectos de los fármacos , Citalopram/farmacología , Paroxetina/farmacología , Receptores de Serotonina/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Conducta Sexual/efectos de los fármacos , Clorhidrato de Vilazodona/farmacología , Animales , Antidepresivos/farmacología , Encéfalo/metabolismo , Masculino , Ratas
15.
Eur J Pharmacol ; 703(1-3): 62-6, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23422875

RESUMEN

Cognitive dysfunction is a component of affective disorders, including depression. Chronic stress is a risk factor for depression, and we have shown that exposing rats to chronic unpredictable stress (CUS) induces a deficit of cognitive flexibility, the ability to modify behavior based on feedback from a changing environment. Deficits of cognitive flexibility, measured by extra-dimensional set-shifting on the Attentional Set-shifting Test (AST), are consistent with dysregulation of prefrontal cortical function, also characteristic of depression. We have shown that increasing norepinephrine in the medial prefrontal cortex facilitated set-shifting, and chronic treatment with the selective norepinephrine reuptake blocker, desipramine, restored cognitive flexibility in rats that had been compromised by CUS. Serotonin reuptake blockade also prevented CUS-induced deficits in cognitive flexibility, suggesting a role for both monoamines in this process. Milnacipran is a serotonin-norepinephrine reuptake inhibitor (SNRI) with moderate preference for blocking norepinephrine reuptake. In this study, we tested the effects of chronic milnacipran treatment on cognitive set-shifting after CUS. Male Sprague-Dawley rats were treated chronically by minipump with milnacipran (30 mg/kg/day), the positive control drug, desipramine (5mg/kg/day), or vehicle, and exposed to CUS or unstressed control conditions. For CUS, a different acute stressor was presented daily for 14 days. On Day 17, rats were tested on the AST. Consistent with previous results, CUS impaired cognitive set-shifting. Further, chronic treatment with either milnacipran or desipramine preserved cognitive flexibility after CUS, suggesting that milnacipran may have efficacy in the management of cognitive dysfunction as a component of stress-related illnesses, including fibromyalgia and depression.


Asunto(s)
Trastornos del Conocimiento/tratamiento farmacológico , Ciclopropanos/uso terapéutico , Inhibidores Selectivos de la Recaptación de Serotonina/uso terapéutico , Estrés Psicológico/tratamiento farmacológico , Inhibidores de Captación Adrenérgica/uso terapéutico , Animales , Trastornos del Conocimiento/etiología , Desipramina/uso terapéutico , Masculino , Milnaciprán , Ratas , Ratas Sprague-Dawley , Estrés Psicológico/complicaciones
16.
Eur J Pharmacol ; 692(1-3): 38-45, 2012 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-22824463

RESUMEN

Amyloid-beta peptides (Aß) can trigger apoptotic cascades in neurons. We found previously that memantine, an uncompetitive antagonist of N-methyl-D-aspartate (NMDA) receptors approved for the treatment of moderate to severe Alzheimer's disease, can prevent neurodegeneration induced by intracranial Aß(1-40) injection. In this study, we tested the hypothesis that memantine prevents Aß(1-40)-mediated cognitive impairment, neurodegeneration, and apoptosis of hippocampal neurons in rats. In addition, we hypothesized that Aß(1-40) injection would induce changes in the levels of one or more apoptosis-related proteins, and that these changes would be attenuated by memantine treatment. Female Sprague-Dawley rats were administered memantine (continuous subcutaneous application, 9.6-14.4mg/kg/day; n=8) or vehicle (water; n=8) for 9 days. Two days after treatment initiation, the animals were bilaterally injected with Aß(1-40) into the CA1/DG region of the hippocampus, subjected to active avoidance testing for 7 days, and sacrificed for immunohistochemical examination of four caspases (3, 6, 8, and 9) and three proteins of the Bcl-2 family (Bcl-2, Bax, and Bad). Injection of Aß resulted in neurodegeneration, DNA fragmentation, increased Bcl-2 immunostaining, and significantly impaired performance in an active avoidance task, all which were significantly attenuated in rats treated with memantine. No differences in immunoreactivity of caspases 3, 6, 8, and 9 were discovered between groups after 7 days. Additional experiments demonstrated that an increase in caspase 8 immunostaining, observed 3 days after Aß(1-40) injection, was significantly attenuated in memantine-treated rats. These data suggest that, in rats, memantine can prevent amyloid-triggered expression of apoptosis-related markers and concomitant cognitive deficits.


Asunto(s)
Péptidos beta-Amiloides/administración & dosificación , Péptidos beta-Amiloides/farmacología , Caspasa 8/metabolismo , Trastornos del Conocimiento/prevención & control , Memantina/farmacología , Fármacos Neuroprotectores/farmacología , Fragmentos de Péptidos/administración & dosificación , Fragmentos de Péptidos/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Animales , Apoptosis/efectos de los fármacos , Trastornos del Conocimiento/metabolismo , Trastornos del Conocimiento/patología , Trastornos del Conocimiento/fisiopatología , Femenino , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Inyecciones , Memoria/efectos de los fármacos , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley
17.
Neuropharmacology ; 61(5-6): 891-9, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21704049

RESUMEN

This preclinical study investigated the ability of memantine (MEM) to stimulate brain acetylcholine (ACh) release, potentially acting synergistically with donepezil (DON, an acetylcholinesterase inhibitor). Acute systemic administration of either MEM or DON to anesthetized rats caused dose-dependent increases of ACh levels in neocortex and hippocampus, and the combination of MEM (5 mg/kg) and DON (0.5 mg/kg) produced significantly greater increases than either drug alone. To determine whether ACh release correlated with cognitive improvement, rats with partial fimbria-fornix (FF) lesions were treated with acute or chronic MEM or DON. Acute MEM treatment significantly elevated baseline hippocampal ACh release but did not significantly improve task performance on a delayed non-match-to-sample (DNMS) task, whereas chronic MEM treatment significantly improved DNMS performance but only marginally elevated baseline ACh levels. Acute or chronic treatment with DON (in the presence of neostigmine to allow ACh collection) did not significantly improve DNMS performance or alter ACh release. In order to investigate the effect of adding MEM to ongoing DON therapy, lesioned rats pretreated with DON for 3 weeks were given a single intraperitoneal dose of MEM. MEM significantly elevated baseline hippocampal ACh levels, but did not significantly improve DNMS task scores compared to chronic DON-treated animals. These data indicate that MEM, in addition to acting as an NMDA receptor antagonist, can also augment ACh release; however, in this preclinical model, increased ACh levels did not directly correlate with improved cognitive performance.


Asunto(s)
Acetilcolina/metabolismo , Inhibidores de la Colinesterasa/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Indanos/farmacología , Memantina/farmacología , Piperidinas/farmacología , Reconocimiento en Psicología/efectos de los fármacos , Animales , Cognición/efectos de los fármacos , Cognición/fisiología , Donepezilo , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Sinergismo Farmacológico , Fórnix/efectos de los fármacos , Fórnix/fisiología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Neocórtex/efectos de los fármacos , Neocórtex/metabolismo , Ratas , Ratas Wistar , Reconocimiento en Psicología/fisiología
18.
Psychiatry Res ; 188(3): 366-71, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21269711

RESUMEN

Memantine, a selective antagonist of the N-methyl-D-aspartate receptor, is approved for the treatment of moderate to severe Alzheimer's disease. Ion dysregulation is thought to be involved in the pathophysiology of bipolar illness, suggesting that memantine may be effective in treating bipolar manic and/or depressive episodes. We utilized two preclinical models of mania that mimic pathophysiologic changes seen in bipolar illness to examine the potential efficacy of memantine in the treatment of this disorder. Locomotor hyperactivity of male Sprague-Dawley rats in an open field was induced with intracerebroventricular (ICV) administration of 10(-3) M ouabain. Memantine (2.5, 5 or 7.5mg/kg), lithium (6.75 mEq/kg), or vehicle were administered acutely via intraperitoneal injection immediately prior to ouabain, then chronically for 7 days (oral memantine 20, 30, and 40 mg/kg/day in water; lithium 2.4 g/kg food). In a second model of bipolar disorder, cycling between population spikes and epileptiform bursts was investigated in rat hippocampal slices treated with ouabain (3.3 µM) alone or in combination with memantine (0.5, 1.0, and 5.0 µM). Ouabain-induced hyperlocomotion was normalized with acute and chronic lithium and chronic use of memantine. Memantine delayed the onset of ouabain-induced-cycling in hippocampal slices. Memantine may have antimanic properties.


Asunto(s)
Trastorno Bipolar/tratamiento farmacológico , Antagonistas de Aminoácidos Excitadores/uso terapéutico , Memantina/uso terapéutico , Potenciales de Acción/efectos de los fármacos , Animales , Antimaníacos/farmacología , Antimaníacos/uso terapéutico , Trastorno Bipolar/fisiopatología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Conducta Exploratoria/efectos de los fármacos , Hipocampo/efectos de los fármacos , Técnicas In Vitro , Cloruro de Litio/farmacología , Cloruro de Litio/uso terapéutico , Masculino , Memantina/farmacología , Ouabaína/farmacología , Ratas , Ratas Sprague-Dawley , Estadísticas no Paramétricas , Factores de Tiempo
19.
Behav Brain Res ; 221(2): 594-603, 2011 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-20553766

RESUMEN

The dysfunction and loss of basal forebrain cholinergic neurons and their cortical projections are among the earliest pathological events in the pathogenesis of Alzheimer's disease (AD). The evidence pointing to cholinergic impairments come from studies that report a decline in the activity of choline acetyltransferase (ChAT) and acetylcholine esterase (AChE), acetylcholine (ACh) release and the levels of nicotinic and muscarinic receptors, and loss of cholinergic basal forebrain neurons in the AD brain. Alzheimer's disease pathology is characterized by an extensive loss of synapses and neuritic branchings which are the dominant scenario as compared to the loss of the neuronal cell bodies themselves. The appearance of cholinergic neuritic dystrophy, i.e. aberrant fibers and fiber swelling are more and more pronounced during brain aging and widely common in AD. When taking amyloid-ß (Aß) deposition as the ultimate causal factor of Alzheimer's disease the role of Aß in cholinergic dysfunction should be considered. In that respect it has been stated that ACh release and synthesis are depressed, axonal transport is inhibited, and that ACh degradation is affected in the presence of Aß peptides. ß-Amyloid peptide 1-42, the principal constituent of the neuritic plaques seen in AD patients, is known to trigger excess amount of glutamate in the synaptic cleft by inhibiting the astroglial glutamate transporter and to increase the intracellular Ca(2+) level. Based on the glutamatergic overexcitation theory of AD progression, the function of NMDA receptors and treatment with NMDA antagonists underlie some recent therapeutic applications. Memantine, a moderate affinity uncompetitive NMDA receptor antagonist interacts with its target only during states of pathological activation but does not interfere with the physiological receptor functions. In this study the neuroprotective effect of memantine on the forebrain cholinergic neurons against Aß42 oligomers-induced toxicity was studied in an in vivo rat dementia model. We found that memantine rescued the neocortical cholinergic fibers originating from the basal forebrain cholinergic neurons, attenuated microglial activation around the intracerebral lesion sides, and improved attention and memory of Aß42-injected rats exhibiting impaired learning and loss of cholinergic innervation of neocortex.


Asunto(s)
Envejecimiento/efectos de los fármacos , Péptidos beta-Amiloides/toxicidad , Fibras Colinérgicas/efectos de los fármacos , Demencia/tratamiento farmacológico , Memantina/uso terapéutico , Fragmentos de Péptidos/toxicidad , Prosencéfalo/efectos de los fármacos , Prosencéfalo/patología , Envejecimiento/patología , Envejecimiento/psicología , Animales , Atención/fisiología , Reacción de Prevención/efectos de los fármacos , Reacción de Prevención/fisiología , Fibras Colinérgicas/patología , Fibras Colinérgicas/fisiología , Demencia/inducido químicamente , Demencia/psicología , Modelos Animales de Enfermedad , Humanos , Masculino , Memantina/farmacología , Microglía/efectos de los fármacos , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/tratamiento farmacológico , Degeneración Nerviosa/fisiopatología , Prosencéfalo/fisiopatología , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores
20.
J Alzheimers Dis ; 21(1): 277-90, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20421694

RESUMEN

Ts65Dn (TS) mice exhibit several phenotypic characteristics of human Down syndrome, including an increased brain expression of amyloid-beta protein precursor (AbetaPP) and cognitive disturbances. Aberrant N-methyl-D-aspartate (NMDA) receptor signaling has been suspected in TS mice, due to an impaired generation of hippocampal long-term potentiation (LTP). Memantine, an uncompetitive NMDA receptor antagonist approved for the treatment of moderate to severe Alzheimer's disease, is known to normalize LTP and improve cognition in transgenic mice with high brain levels of AbetaPP and amyloid-beta protein. It has recently been demonstrated that acute injections of memantine rescue performance deficits of TS mice on a fear conditioning test. Here we show that oral treatment of aged TS mice with a clinically relevant dose of memantine (30 mg/kg/day for 9 weeks) improved spatial learning in the water maze task and slightly reduced brain AbetaPP levels. We also found that TS mice exhibited a significantly reduced granule cell count and vesicular glutamate transporter-1 (VGLUT1) labeling compared to disomic control mice. After memantine treatment, the levels of hippocampal VGLUT1 were significantly increased, reaching the levels observed in vehicle treated-control animals. Memantine did not significantly affect granule cell density. These data indicate that memantine may normalize several phenotypic abnormalities in TS mice, many of which--such as impaired cognition--are also associated with Down syndrome and Alzheimer's disease.


Asunto(s)
Antiparkinsonianos/uso terapéutico , Síndrome de Down/complicaciones , Síndrome de Down/tratamiento farmacológico , Memantina/uso terapéutico , Fenotipo , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Análisis de Varianza , Animales , Conducta Animal/efectos de los fármacos , Señales (Psicología) , Modelos Animales de Enfermedad , Síndrome de Down/genética , Síndrome de Down/patología , Conducta Exploratoria/efectos de los fármacos , Trastornos Neurológicos de la Marcha/tratamiento farmacológico , Trastornos Neurológicos de la Marcha/etiología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Humanos , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Desempeño Psicomotor/efectos de los fármacos , Tiempo de Reacción/efectos de los fármacos , Prueba de Desempeño de Rotación con Aceleración Constante/métodos , Percepción Espacial/efectos de los fármacos , Proteína 1 de Transporte Vesicular de Glutamato/genética , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...