Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 247
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 300(5): 107301, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38641068

RESUMEN

Ubiquinol or coenzyme Q (CoQ) is a lipid-soluble electron carrier in the respiratory chain and an electron acceptor for various enzymes in metabolic pathways that intersect at this cofactor hub in the mitochondrial inner membrane. The reduced form of CoQ is an antioxidant, which protects against lipid peroxidation. In this study, we have optimized a UV-detected HPLC method for CoQ analysis from biological materials, which involves a rapid single-step extraction into n-propanol followed by direct sample injection onto a column. Using this method, we have measured the oxidized, reduced, and total CoQ pools and monitored shifts in the CoQ redox status in response to cell culture conditions and bioenergetic perturbations. We find that hypoxia or sulfide exposure induces a reductive shift in the intracellular CoQ pool. The effect of hypoxia is, however, rapidly reversed by exposure to ambient air. Interventions at different loci in the electron transport chain can induce sizeable redox shifts in the oxidative or reductive direction, depending on whether they are up- or downstream of complex III. We have also used this method to confirm that CoQ levels are higher and more reduced in murine heart versus brain. In summary, the availability of a convenient HPLC-based method described herein will facilitate studies on CoQ redox dynamics in response to environmental, nutritional, and endogenous alterations.

2.
J Biol Chem ; 300(5): 107149, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38479599

RESUMEN

Persulfides (RSSH/RSS-) participate in sulfur metabolism and are proposed to transduce hydrogen sulfide (H2S) signaling. Their biochemical properties are poorly understood. Herein, we studied the acidity and nucleophilicity of several low molecular weight persulfides using the alkylating agent, monobromobimane. The different persulfides presented similar pKa values (4.6-6.3) and pH-independent rate constants (3.2-9.0 × 103 M-1 s-1), indicating that the substituents in persulfides affect properties to a lesser extent than in thiols because of the larger distance to the outer sulfur. The persulfides had higher reactivity with monobromobimane than analogous thiols and putative thiols with the same pKa, providing evidence for the alpha effect (enhanced nucleophilicity by the presence of a contiguous atom with high electron density). Additionally, we investigated two enzymes from the human mitochondrial H2S oxidation pathway that form catalytic persulfide intermediates, sulfide quinone oxidoreductase and thiosulfate sulfurtransferase (TST, rhodanese). The pH dependence of the activities of both enzymes was measured using sulfite and/or cyanide as sulfur acceptors. The TST half-reactions were also studied by stopped-flow fluorescence spectroscopy. Both persulfidated enzymes relied on protonated groups for reaction with the acceptors. Persulfidated sulfide quinone oxidoreductase appeared to have a pKa of 7.8 ± 0.2. Persulfidated TST presented a pKa of 9.38 ± 0.04, probably due to a critical active site residue rather than the persulfide itself. The TST thiol reacted in the anionic state with thiosulfate, with an apparent pKa of 6.5 ± 0.1. Overall, our study contributes to a fundamental understanding of persulfide properties and their modulation by protein environments.

3.
Nat Chem Biol ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509349

RESUMEN

Angiogenic programming in the vascular endothelium is a tightly regulated process for maintaining tissue homeostasis and is activated in tissue injury and the tumor microenvironment. The metabolic basis of how gas signaling molecules regulate angiogenesis is elusive. Here, we report that hypoxic upregulation of ·NO in endothelial cells reprograms the transsulfuration pathway to increase biogenesis of hydrogen sulfide (H2S), a proangiogenic metabolite. However, decreased H2S oxidation due to sulfide quinone oxidoreductase (SQOR) deficiency synergizes with hypoxia, inducing a reductive shift and limiting endothelial proliferation that is attenuated by dissipation of the mitochondrial NADH pool. Tumor xenografts in whole-body (WBCreSqorfl/fl) and endothelial-specific (VE-cadherinCre-ERT2Sqorfl/fl) Sqor-knockout mice exhibit lower mass and angiogenesis than control mice. WBCreSqorfl/fl mice also exhibit decreased muscle angiogenesis following femoral artery ligation compared to control mice. Collectively, our data reveal the molecular intersections between H2S, O2 and ·NO metabolism and identify SQOR inhibition as a metabolic vulnerability for endothelial cell proliferation and neovascularization.

4.
Trends Biochem Sci ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38514275

RESUMEN

Discoveries at the frontiers of science and finding solutions to pressing biomedical problems will be accelerated when talent, which is widely distributed, is better aligned with opportunities. Strategies to enhance a MOSAIC (Maximizing Opportunities for Scientific and Academic Independent Careers) professoriate and diversify the biomedical landscape are discussed.

5.
Proc Natl Acad Sci U S A ; 121(12): e2319473121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38478695

RESUMEN

Hydrogen sulfide exposure in moderate doses can induce profound but reversible hypometabolism in mammals. At a cellular level, H2S inhibits the electron transport chain (ETC), augments aerobic glycolysis, and glutamine-dependent carbon utilization via reductive carboxylation; however, the durability of these changes is unknown. We report that despite its volatility, H2S preconditioning increases P50(O2), the O2 pressure for half-maximal cellular respiration, and has pleiotropic effects on oxidative metabolism that persist up to 24 to 48 h later. Notably, cyanide, another complex IV inhibitor, does not induce this type of metabolic memory. Sulfide-mediated prolonged fractional inhibition of complex IV by H2S is modulated by sulfide quinone oxidoreductase, which commits sulfide to oxidative catabolism. Since induced hypometabolism can be beneficial in disease settings that involve insufficient or interrupted blood flow, our study has important implications for attenuating reperfusion-induced ischemic injury and/or prolonging the shelf life of biologics like platelets.


Asunto(s)
Sulfuro de Hidrógeno , Daño por Reperfusión , Animales , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/metabolismo , Sulfuros , Oxidación-Reducción , Mamíferos/metabolismo
6.
bioRxiv ; 2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38352460

RESUMEN

Inter-organellar communication is critical for cellular metabolic homeostasis. One of the most abundant inter-organellar interactions are those at the endoplasmic reticulum and mitochondria contact sites (ERMCS). However, a detailed understanding of the mechanisms governing ERMCS regulation and their roles in cellular metabolism are limited by a lack of tools that permit temporal induction and reversal. Through unbiased screening approaches, we identified fedratinib, an FDA-approved drug, that dramatically increases ERMCS abundance by inhibiting the epigenetic modifier BRD4. Fedratinib rapidly and reversibly modulates mitochondrial and ER morphology and alters metabolic homeostasis. Moreover, ERMCS modulation depends on mitochondria electron transport chain complex III function. Comparison of fedratinib activity to other reported inducers of ERMCS revealed common mechanisms of induction and function, providing clarity and union to a growing body of experimental observations. In total, our results uncovered a novel epigenetic signaling pathway and an endogenous metabolic regulator that connects ERMCS and cellular metabolism.

7.
J Biol Chem ; 299(12): 105449, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37949228

RESUMEN

Cystathionine ß-synthase (CBS) catalyzes the committing step in the transsulfuration pathway, which is important for clearing homocysteine and furnishing cysteine. The transsulfuration pathway also generates H2S, a signaling molecule. CBS is a modular protein with a heme and pyridoxal phosphate-binding catalytic core, which is separated by a linker region from the C-terminal regulatory domain that binds S-adenosylmethionine (AdoMet), an allosteric activator. Recent cryo-EM structures reveal that CBS exists in a fibrillar form and undergoes a dramatic architectural rearrangement between the basal and AdoMet-bound states. CBS is the single most common locus of mutations associated with homocystinuria, and, in this study, we have characterized three clinical variants (K384E/N and M391I), which reside in the linker region. The native fibrillar form is destabilized in the variants, and differences in their limited proteolytic fingerprints also reveal conformational alterations. The crystal structure of the truncated K384N variant, lacking the regulatory domain, reveals that the overall fold of the catalytic core is unperturbed. M391I CBS exhibits a modest (1.4-fold) decrease while the K384E/N variants exhibit a significant (∼8-fold) decrease in basal activity, which is either unresponsive to or inhibited by AdoMet. Pre-steady state kinetic analyses reveal that the K384E/N substitutions exhibit pleiotropic effects and that the differences between them are expressed in the second half reaction, that is, homocysteine binding and reaction with the aminoacrylate intermediate. Together, these studies point to an important role for the linker in stabilizing the higher-order oligomeric structure of CBS and enabling AdoMet-dependent regulation.


Asunto(s)
Cistationina betasintasa , Mutación , Humanos , Regulación Alostérica/genética , Cristalografía por Rayos X , Cistationina betasintasa/química , Cistationina betasintasa/genética , Cistationina betasintasa/metabolismo , Homocisteína/metabolismo , Homocistinuria/enzimología , Homocistinuria/genética , Cinética , S-Adenosilmetionina/metabolismo , Conformación Proteica , Dominio Catalítico
8.
J Am Chem Soc ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37916782

RESUMEN

Cobalt-sulfur (Co-S) coordination is labile to both oxidation and reduction chemistry and is rarely seen in nature. Cobalamin (or vitamin B12) is an essential cobalt-containing organometallic cofactor in mammals and is escorted via an intricate network of chaperones to a single cytoplasmic target, methionine synthase. In this study, we report that the human cobalamin trafficking protein, MMADHC, exploits the chemical lability of Co-S coordination for cofactor off-loading onto methionine synthase. Cys-261 on MMADHC serves as the ß-axial ligand to cobalamin. Complex formation between MMADHC and methionine synthase is signaled by loss of the lower axial nitrogen ligand, leading to five-coordinate thiolato-cobalamin. Nucleophilic displacement by the vicinal thiolate, Cys-262, completes cofactor transfer to methionine synthase and release of a cysteine disulfide-containing MMADHC. The physiological relevance of this mechanism is supported by clinical variants of MMADHC, which impair cofactor binding and off-loading, explaining the molecular basis of the associated homocystinuria.

9.
bioRxiv ; 2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37904965

RESUMEN

Hydrogen sulfide exposure in moderate doses can induce profound but reversible hypometabolism in mammals. At a cellular level, H 2 S inhibits the electron transport chain (ETC), augments aerobic glycolysis, and glutamine-dependent carbon utilization via reductive carboxylation; however, the durability of these changes is unknown. We report that despite its volatility, H 2 S preconditioning increases P 50(O2) , the O 2 pressure for half maximal cellular respiration, and has pleiotropic effects on oxidative metabolism that persist up to 24-48 h later. Notably, cyanide, another complex IV inhibitor, does not induce this type of metabolic memory. Sulfide-mediated prolonged fractional inhibition of complex IV by H 2 S is modulated by sulfide quinone oxidoreductase, which commits sulfide to oxidative catabolism. Since induced hypometabolism can be beneficial in disease settings that involve insufficient or interrupted blood flow, our study has important implications for attenuating reperfusion-induced ischemic injury, and/or prolonging shelf life of biologics like platelets.

10.
Trends Biochem Sci ; 48(9): 743-745, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37567151
11.
Inorg Chem ; 62(32): 12630-12633, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37526260

RESUMEN

Cobalamin (or vitamin B12)-dependent enzymes and trafficking chaperones exploit redox-linked coordination chemistry to control the cofactor reactivity during catalysis and translocation. As the cobalt oxidation state decreases from 3+ to 1+, the preferred cobalamin geometry changes from six- to four-coordinate (4-c). In this study, we reveal the sizable thermodynamic gain that accrues for human adenosine triphosphate (ATP):cob(I)alamin adenosyltransferase (or MMAB) by enforcing an unfavorable 4-c cob(II)alamin geometry. MMAB-bound cob(II)alamin is reduced to the supernucleophilic cob(I)alamin intermediate during the synthesis of 5'-deoxyadenosylcobalamin. Herein, we report the first experimentally determined reduction potential for 4-c cob(II)alamin (-325 ± 9 mV), which is 180 mV more positive than for the five-coordinate (5-c) water-liganded species. The redox potential of MMAB-bound cob(II)alamin is within the range of adrenodoxin, which we demonstrate functions as an electron donor. We also show that stabilization of 5-c cob(II)alamin by a subset of MMAB patient variants compromises the reduction by adrenodoxin, explaining the underlying pathogenic mechanism.


Asunto(s)
Adenosina Trifosfato , Adrenodoxina , Humanos , Vitamina B 12
12.
bioRxiv ; 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37546824

RESUMEN

Cobalt-sulfur (Co-S) coordination is labile to both oxidation and reduction chemistry and is rarely seen in Nature. Cobalamin (or vitamin B 12 ) is an essential cobalt-containing organometallic cofactor in mammals, and is escorted via an intricate network of chaperones to a single cytoplasmic target, methionine synthase. In this study, we report that the human cobalamin trafficking protein, MMADHC, exploits the chemical lability of Co-S coordination, for cofactor off-loading onto methionine synthase. Cys-261 on MMADHC serves as the ß-axial ligand to cobalamin. Complex formation between MMADHC and methionine synthase is signaled by loss of the lower axial nitrogen ligand, leading to five-coordinate thiolato-cobalamin. Nucleophilic displacement by the vicinal thiolate, Cys-262, completes cofactor transfer to methionine synthase and release of a cysteine disulfide-containing MMADHC. The physiological relevance of this mechanism is supported by clinical variants of MMADHC, which impair cofactor binding and off-loading, explaining the molecular basis of the associated homocystinuria.

14.
Nat Commun ; 14(1): 4332, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37468522

RESUMEN

G-proteins function as molecular switches to power cofactor translocation and confer fidelity in metal trafficking. The G-protein, MMAA, together with MMAB, an adenosyltransferase, orchestrate cofactor delivery and repair of B12-dependent human methylmalonyl-CoA mutase (MMUT). The mechanism by which the complex assembles and moves a >1300 Da cargo, or fails in disease, are poorly understood. Herein, we report the crystal structure of the human MMUT-MMAA nano-assembly, which reveals a dramatic 180° rotation of the B12 domain, exposing it to solvent. The complex, stabilized by MMAA wedging between two MMUT domains, leads to ordering of the switch I and III loops, revealing the molecular basis of mutase-dependent GTPase activation. The structure explains the biochemical penalties incurred by methylmalonic aciduria-causing mutations that reside at the MMAA-MMUT interfaces we identify here.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Transferasas Intramoleculares , Humanos , Metilmalonil-CoA Mutasa/genética , Metilmalonil-CoA Mutasa/metabolismo , Mutación , Errores Innatos del Metabolismo de los Aminoácidos/genética , Proteínas de Unión al GTP/genética , GTP Fosfohidrolasas/metabolismo , Transferasas Intramoleculares/genética
15.
Anal Biochem ; 673: 115191, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37207973

RESUMEN

H2S is a redox-active signaling molecule that exerts an array of cellular and physiological effects. While intracellular H2S concentrations are estimated to be in the low nanomolar range, intestinal luminal concentrations can be significantly higher due to microbial metabolism. Studies assessing H2S effects are typically conducted with a bolus treatment with sulfide salts or slow releasing sulfide donors, which are limited by the volatility of H2S, and by potential off-target effects of the donor molecules. To address these limitations, we describe the design and performance of a mammalian cell culture incubator for sustained exposure to 20-500 ppm H2S (corresponding to a dissolved sulfide concentrations of ∼4-120 µM in the cell culture medium). We report that colorectal adenocarcinoma HT29 cells tolerate prolonged exposure to H2S with no effect on cell viability after 24 h although ≥50 ppm H2S (∼10 µM) restricts cell proliferation. Even the lowest concentration of H2S used in this study (i.e. ∼4 µM) significantly enhanced glucose consumption and lactate production, revealing a much lower threshold for impacting cellular energy metabolism and activating aerobic glycolysis than has been previously appreciated from studies with bolus H2S treatment regimens.


Asunto(s)
Neoplasias Colorrectales , Sulfuro de Hidrógeno , Humanos , Animales , Sulfuro de Hidrógeno/metabolismo , Oxidación-Reducción , Proliferación Celular , Sulfuros/farmacología , Mamíferos/metabolismo
16.
bioRxiv ; 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36993187

RESUMEN

Angiogenic programming in the vascular endothelium is a tightly regulated process to maintain tissue homeostasis and is activated in tissue injury and the tumor microenvironment. The metabolic basis of how gas signaling molecules regulate angiogenesis is elusive. Herein, we report that hypoxic upregulation of NO synthesis in endothelial cells reprograms the transsulfuration pathway and increases H 2 S biogenesis. Furthermore, H 2 S oxidation by mitochondrial sulfide quinone oxidoreductase (SQOR) rather than downstream persulfides, synergizes with hypoxia to induce a reductive shift, limiting endothelial cell proliferation that is attenuated by dissipation of the mitochondrial NADH pool. Tumor xenografts in whole-body WB Cre SQOR fl/fl knockout mice exhibit lower mass and reduced angiogenesis compared to SQOR fl/fl controls. WB Cre SQOR fl/fl mice also exhibit reduced muscle angiogenesis following femoral artery ligation, compared to controls. Collectively, our data reveal the molecular intersections between H 2 S, O 2 and NO metabolism and identify SQOR inhibition as a metabolic vulnerability for endothelial cell proliferation and neovascularization. Highlights: Hypoxic induction of •NO in endothelial cells inhibits CBS and switches CTH reaction specificity Hypoxic interruption of the canonical transsulfuration pathway promotes H 2 S synthesis Synergizing with hypoxia, SQOR deficiency induces a reductive shift in the ETC and restricts proliferationSQOR KO mice exhibit lower neovascularization in tumor xenograft and hind limb ischemia models.

17.
bioRxiv ; 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36993209

RESUMEN

G-proteins function as molecular switches to power cofactor translocation and confer fidelity in metal trafficking. MMAA, a G-protein motor, together with MMAB, an adenosyltransferase, orchestrate cofactor delivery and repair of B 12 -dependent human methylmalonyl-CoA mutase (MMUT). The mechanism by which the motor assembles and moves a >1300 Da cargo, or fails in disease, are poorly understood. Herein, we report the crystal structure of the human MMUT-MMAA nanomotor assembly, which reveals a dramatic 180° rotation of the B 12 domain, exposing it to solvent. The nanomotor complex, stabilized by MMAA wedging between two MMUT domains, leads to ordering of the switch I and III loops, revealing the molecular basis of mutase-dependent GTPase activation. The structure explains the biochemical penalties incurred by methylmalonic aciduria-causing mutations that reside at the newly identified MMAA-MMUT interfaces.

18.
Proc Natl Acad Sci U S A ; 120(11): e2220677120, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36888659

RESUMEN

Control over transition metal redox state is essential for metalloprotein function and can be achieved via coordination chemistry and/or sequestration from bulk solvent. Human methylmalonyl-Coenzyme A (CoA) mutase (MCM) catalyzes the isomerization of methylmalonyl-CoA to succinyl-CoA using 5'-deoxyadenosylcobalamin (AdoCbl) as a metallocofactor. During catalysis, the occasional escape of the 5'-deoxyadenosine (dAdo) moiety leaves the cob(II)alamin intermediate stranded and prone to hyperoxidation to hydroxocobalamin, which is recalcitrant to repair. In this study, we have identified the use of bivalent molecular mimicry by ADP, coopting the 5'-deoxyadenosine and diphosphate moieties in the cofactor and substrate, respectively, to protect against cob(II)alamin overoxidation on MCM. Crystallographic and electron paramagnetic resonance (EPR) data reveal that ADP exerts control over the metal oxidation state by inducing a conformational change that seals off solvent access, rather than by switching five-coordinate cob(II)alamin to the more air stable four-coordinate state. Subsequent binding of methylmalonyl-CoA (or CoA) promotes cob(II)alamin off-loading from MCM to adenosyltransferase for repair. This study identifies an unconventional strategy for controlling metal redox state by an abundant metabolite to plug active site access, which is key to preserving and recycling a rare, but essential, metal cofactor.


Asunto(s)
Imitación Molecular , Vitamina B 12 , Humanos , Oxidación-Reducción , Adenosina Difosfato/metabolismo , Vitamina B 12/metabolismo , Metilmalonil-CoA Mutasa/química , Metilmalonil-CoA Mutasa/metabolismo
19.
Cell Metab ; 35(1): 134-149.e6, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36528023

RESUMEN

Effective therapies are lacking for patients with advanced colorectal cancer (CRC). The CRC tumor microenvironment has elevated metabolic waste products due to altered metabolism and proximity to the microbiota. The role of metabolite waste in tumor development, progression, and treatment resistance is unclear. We generated an autochthonous metastatic mouse model of CRC and used unbiased multi-omic analyses to reveal a robust accumulation of tumoral ammonia. The high ammonia levels induce T cell metabolic reprogramming, increase exhaustion, and decrease proliferation. CRC patients have increased serum ammonia, and the ammonia-related gene signature correlates with altered T cell response, adverse patient outcomes, and lack of response to immune checkpoint blockade. We demonstrate that enhancing ammonia clearance reactivates T cells, decreases tumor growth, and extends survival. Moreover, decreasing tumor-associated ammonia enhances anti-PD-L1 efficacy. These findings indicate that enhancing ammonia detoxification can reactivate T cells, highlighting a new approach to enhance the efficacy of immunotherapies.


Asunto(s)
Amoníaco , Neoplasias Colorrectales , Animales , Ratones , Agotamiento de Células T , Linfocitos T , Neoplasias Colorrectales/patología , Inmunoterapia , Microambiente Tumoral
20.
Antioxid Redox Signal ; 38(1-3): 57-67, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35651282

RESUMEN

Significance: A burgeoning literature has attributed varied physiological effects to hydrogen sulfide (H2S), which is a product of eukaryotic sulfur amino acid metabolism. Protein persulfidation represents a major focus of studies elucidating the mechanism underlying H2S signaling. On the contrary, the capacity of H2S to induce reductive stress by targeting the electron transport chain (ETC) and signal by reprogramming redox metabolism has only recently begun to be elucidated. Recent Advances: In contrast to the nonspecific reaction of H2S with oxidized cysteines to form protein persulfides, its inhibition of complex IV represents a specific mechanism of action. Studies on the dual impact of H2S as an ETC substrate and an inhibitor have led to the exciting discovery of ETC plasticity and the use of fumarate as a terminal electron acceptor. H2S oxidation combined with complex IV targeting generates mitochondrial reductive stress, which is signaled through the metabolic network, leading to increased aerobic glycolysis, glutamine-dependent reductive carboxylation, and lipogenesis. Critical Issues: Insights into H2S-induced metabolic reprogramming are ushering in a paradigm shift for understanding the mechanism of its cellular action. It will be critical to reevaluate the physiological effects of H2S, for example, cytoprotection against ischemia-reperfusion injury, through the framework of metabolic reprogramming and ETC remodeling by H2S. Future Directions: The metabolic ramifications of H2S in other cellular compartments, for example, the endoplasmic reticulum and the nucleus, as well as the intersections between hypoxia and H2S signaling are important future directions that merit elucidation. Antioxid. Redox Signal. 38, 57-67.


Asunto(s)
Sulfuro de Hidrógeno , Sulfuro de Hidrógeno/metabolismo , Transporte de Electrón , Transducción de Señal , Oxidación-Reducción , Cisteína/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...