Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Death Discov ; 10(1): 274, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851743

RESUMEN

Diverse mechanisms have been established to understand the chemoresistance of hepatocellular carcinoma (HCC), but the contribution of non-coding RNAs is not surveyed well. Here, we aimed to explore the lncRNA-miRNA axis in Hepatitis C and B virus (HCV and HBV) infected HCC to investigate the molecular mechanism of chemoresistance and to identify a potential therapeutic target for HCC. The small RNA transcriptome analysis followed by qRT-PCR validation with the liver tissues of both HCV and HBV infected HCC patients revealed that miR-424-5p, miR-136-3p, miR-139-5p, miR-223-3p, and miR-375-3p were the most downregulated miRNAs in HCC compared to normal (log2 fold change ≤-1.5, Padj ≤ 0.05). In silico pathway analysis with the validated targets of each miRNA revealed that the signalling pathway regulating pluripotency of stem cells is commonly targeted by these five miRNAs. Subsequent validation by 3'UTR-luciferase assay and western blot analysis unveiled that these five miRNAs impeded either same or diverse genes, but all linked to BMP signalling pathway such as BMPR1A/BMPR1B by miR-139-5p, miR-136-3p, and miR-375-3p, and ACVR2A/ACVR2B by miR-424-5p and miR-223-3p. Furthermore, restoration of each miRNA in Huh7/SNU449 cells inhibited phosphorylation of downstream SMAD1/5 and ERK1/2, and attenuated Epithelial-mesenchymal transition, stemness, spheroid formation, chemoresistance, invasion and migration of cells. To investigate the mechanism of suppression of these miRNAs, "DIANA" tool was employed and lncRNA-KCNQ1OT1 was retrieved as interacting partner of all the five miRNAs. In vitro RNA pull-down assay revealed that lncRNA-KCNQ1OT1 physically interacted and sequestered these five miRNAs in the cytoplasm. Hence, KCNQ1OT1 was suppressed in Huh7/SNU449 cells using CRISPR technology and observed regression of oncogenic properties with enhanced chemosensitivity and reduced metastasis in cancer cells. Shrinkage of tumour size and volume in NOD-SCID mice injected with KCNQ1OT1-sgRNA cells further strengthened our observations. Thus, lncRNA-KCNQ1OT1 is the main regulator, which reduces the level of beneficiary miRNAs in the tumour milieu and modulates BMP signalling pathway to promote chemoresistance in HCC, suggesting lncRNA-KCNQ1OT1 might have robust potential to be a therapeutic target in HCC.

2.
Front Immunol ; 14: 1241755, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38146363

RESUMEN

Background and aims: Alcoholic liver disease (ALD) is the leading cause of the liver cirrhosis related death worldwide. Excessive alcohol consumption resulting enhanced gut permeability which trigger sensitization of inflammatory cells to bacterial endotoxins and induces secretion of cytokines, chemokines leading to activation of stellate cells, neutrophil infiltration and hepatocyte injury followed by steatohepatitis, fibrosis and cirrhosis. But all chronic alcoholics are not susceptible to ALD. This study investigated the causes of differential immune responses among ALD patients and alcoholic controls (ALC) to identify genetic risk factors and assessed the therapeutic potential of a microRNA, miR-124-3p. Materials and methods: Bio-Plex Pro™ Human Chemokine analysis/qRT-PCR array was used for identification of deregulated immune genes. Sequencing/luciferase assay/ELISA detected and confirmed the polymorphisms. THP1 co-cultured with HepG2/LX2/HUVEC and apoptosis assay/qRT-PCR/neutrophil migration assay were employed as required. Results: The combined data analysis of the GSE143318/Bio-Plex Pro™ Human Chemokine array and qRT-PCR array revealed that six genes (TNFα/IL1ß/IL8/MCP1/IL6/TGFß) were commonly overexpressed in both serum/liver tissue of ALD-patients compared to ALC. The promoter sequence analysis of these 6 genes among ALD (n=322)/ALC (n=168) samples revealed that only two SNPs, rs361525(G/A) at -238 in TNF-α/rs1143627(C/T) at -31 in IL1ß were independently associated with ALD respectively. To evaluate the functional implication of these SNPs on ALD development, the serum level of TNF-α/IL1ß was verified and observed significantly higher in ALD patients with risk genotypes TNF-α-238GA/IL1ß-31CT+TT than TNF-α-238GG/IL1ß-31CC. The TNF-α/IL1ß promoter Luciferase-reporter assays showed significantly elevated level of luciferase activities with risk genotypes -238AA/-31TT than -238GG/-31CC respectively. Furthermore, treatment of conditioned medium of TNF-α/IL1ß over-expressed THP1 cells to HepG2/LX2/HUVEC cells independently showed enhanced level of ER stress and apoptosis in HepG2/increased TGFß and collagen-I production by LX2/huge neutrophil infiltration through endothelial layer. However, restoration of miR-124-3p in THP1 attenuated such inter-cellular communications and hepatocyte damage/collagen production/neutrophil infiltration were prohibited. Target analysis/luciferase-reporter assays revealed that both TNF-α/IL1ß were inhibited by miR-124-3p along with multiple genes from TLR4 signaling/apoptosis/fibrogenesis pathways including MYD88, TRAF3/TRADD, Caspase8/PDGFRA, TGFßR2/MCP1, and ICAM1 respectively. Conclusion: Thus, rs361525(G/A) in TNF-α and rs1143627(C/T) in IL1ß gene may be used as early predictors of ALD susceptibility among East Indian population. Impeding overexpressed TNF-α/IL1ß and various genes from associated immune response pathways, miR-124-3p exhibits robust therapeutic potential for ALD patients.


Asunto(s)
Interleucina-1beta , Hepatopatías Alcohólicas , MicroARNs , Factor de Necrosis Tumoral alfa , Humanos , Quimiocinas/genética , Colágeno/genética , Cirrosis Hepática/genética , Hepatopatías Alcohólicas/genética , Luciferasas/genética , MicroARNs/genética , Polimorfismo de Nucleótido Simple , Factor de Crecimiento Transformador beta/genética , Factor de Necrosis Tumoral alfa/genética , Interleucina-1beta/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...