Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Process Control ; 1392024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38855126

RESUMEN

Behavioral interventions (such as those developed to increase physical activity, achieve smoking cessation, or weight loss) can be represented as dynamic process systems incorporating a multitude of factors, ranging from cognitive (internal) to environmental (external) influences. This facilitates the application of system identification and control engineering methods to address questions such as: what drives individuals to improve health behaviors (such as engaging in physical activity)? In this paper, the goal is to efficiently estimate personalized, dynamic models which in turn will lead to control systems that can optimize this behavior. This problem is examined in system identification applied to the Just Walk study that aimed to increase walking behavior in sedentary adults. The paper presents a Discrete Simultaneous Perturbation Stochastic Approximation (DSPSA)-based modeling of the Goal Attainment construct estimated using AutoRegressive with eXogenous inputs (ARX) models. Feature selection of participants and ARX order selection is achieved through the DSPSA algorithm, which efficiently handles computationally expensive calculations. DSPSA can search over large sets of features as well as regressor structures in an informed, principled manner to model behavioral data within reasonable computational time. DSPSA estimation highlights the large individual variability in motivating factors among participants in Just Walk, thus emphasizing the importance of a personalized approach for optimized behavioral interventions.

2.
JMIR Res Protoc ; 12: e52161, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37751237

RESUMEN

BACKGROUND: Just-in-time adaptive interventions (JITAIs) are designed to provide support when individuals are receptive and can respond beneficially to the prompt. The notion of a just-in-time (JIT) state is critical for JITAIs. To date, JIT states have been formulated either in a largely data-driven way or based on theory alone. There is a need for an approach that enables rigorous theory testing and optimization of the JIT state concept. OBJECTIVE: The purpose of this system ID experiment was to investigate JIT states empirically and enable the empirical optimization of a JITAI intended to increase physical activity (steps/d). METHODS: We recruited physically inactive English-speaking adults aged ≥25 years who owned smartphones. Participants wore a Fitbit Versa 3 and used the study app for 270 days. The JustWalk JITAI project uses system ID methods to study JIT states. Specifically, provision of support systematically varied across different theoretically plausible operationalizations of JIT states to enable a more rigorous and systematic study of the concept. We experimentally varied 2 intervention components: notifications delivered up to 4 times per day designed to increase a person's steps within the next 3 hours and suggested daily step goals. Notifications to walk were experimentally provided across varied operationalizations of JIT states accounting for need (ie, whether daily step goals were previously met or not), opportunity (ie, whether the next 3 h were a time window during which a person had previously walked), and receptivity (ie, a person previously walked after receiving notifications). Suggested daily step goals varied systematically within a range related to a person's baseline level of steps per day (eg, 4000) until they met clinically meaningful targets (eg, averaging 8000 steps/d as the lower threshold across a cycle). A series of system ID estimation approaches will be used to analyze the data and obtain control-oriented dynamical models to study JIT states. The estimated models from all approaches will be contrasted, with the ultimate goal of guiding rigorous, replicable, empirical formulation and study of JIT states to inform a future JITAI. RESULTS: As is common in system ID, we conducted a series of simulation studies to formulate the experiment. The results of our simulation studies illustrated the plausibility of this approach for generating informative and unique data for studying JIT states. The study began enrolling participants in June 2022, with a final enrollment of 48 participants. Data collection concluded in April 2023. Upon completion of the analyses, the results of this study are expected to be submitted for publication in the fourth quarter of 2023. CONCLUSIONS: This study will be the first empirical investigation of JIT states that uses system ID methods to inform the optimization of a scalable JITAI for physical activity. TRIAL REGISTRATION: ClinicalTrials.gov NCT05273437; https://clinicaltrials.gov/ct2/show/NCT05273437. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/52161.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...