Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Plant Microbe Interact ; 37(3): 239-249, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37921637

RESUMEN

Plant pathogens manipulate the cellular environment of the host to facilitate infection and colonization that often lead to plant diseases. To accomplish this, many specialized pathogens secrete virulence proteins called effectors into the host cell, which subvert processes such as immune signaling, gene transcription, and host metabolism. Phytophthora infestans, the causative agent of potato late blight, employs an expanded repertoire of RxLR effectors with WY domains to manipulate the host through direct interaction with protein targets. However, our understanding of the molecular mechanisms underlying the interactions between WY effectors and their host targets remains limited. In this study, we performed a structural and biophysical characterization of the P. infestans WY effector Pi04314 in complex with the potato Protein Phosphatase 1-c (PP1c). We elucidate how Pi04314 uses a WY domain and a specialized C-terminal loop carrying a KVxF motif that interact with conserved surfaces on PP1c, known to be used by host regulatory proteins for guiding function. Through biophysical and in planta analyses, we demonstrate that Pi04314 WY or KVxF mutants lose their ability to bind PP1c. The loss of PP1c binding correlates with changes in PP1c nucleolar localization and a decrease in lesion size in plant infection assays. This study provides insights into the manipulation of plant hosts by pathogens, revealing how effectors exploit key regulatory interfaces in host proteins to modify their function and facilitate disease. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Asunto(s)
Phytophthora infestans , Phytophthora infestans/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Plantas/metabolismo , Factores de Transcripción/metabolismo , Unión Proteica , Enfermedades de las Plantas
2.
Plant Cell ; 35(10): 3809-3827, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37486356

RESUMEN

Engineering the plant immune system offers genetic solutions to mitigate crop diseases caused by diverse agriculturally significant pathogens and pests. Modification of intracellular plant immune receptors of the nucleotide-binding leucine-rich repeat (NLR) receptor superfamily for expanded recognition of pathogen virulence proteins (effectors) is a promising approach for engineering disease resistance. However, engineering can cause NLR autoactivation, resulting in constitutive defense responses that are deleterious to the plant. This may be due to plant NLRs associating in highly complex signaling networks that coevolve together, and changes through breeding or genetic modification can generate incompatible combinations, resulting in autoimmune phenotypes. The sensor and helper NLRs of the rice (Oryza sativa) NLR pair Pik have coevolved, and mismatching between noncoevolved alleles triggers constitutive activation and cell death. This limits the extent to which protein modifications can be used to engineer pathogen recognition and enhance disease resistance mediated by these NLRs. Here, we dissected incompatibility determinants in the Pik pair in Nicotiana benthamiana and found that heavy metal-associated (HMA) domains integrated in Pik-1 not only evolved to bind pathogen effectors but also likely coevolved with other NLR domains to maintain immune homeostasis. This explains why changes in integrated domains can lead to autoactivation. We then used this knowledge to facilitate engineering of new effector recognition specificities, overcoming initial autoimmune penalties. We show that by mismatching alleles of the rice sensor and helper NLRs Pik-1 and Pik-2, we can enable the integration of synthetic domains with novel and enhanced recognition specificities. Taken together, our results reveal a strategy for engineering NLRs, which has the potential to allow an expanded set of integrations and therefore new disease resistance specificities in plants.


Asunto(s)
Resistencia a la Enfermedad , Proteínas de Plantas , Resistencia a la Enfermedad/genética , Proteínas de Plantas/metabolismo , Alelos , Plantas/genética , Inmunidad de la Planta/genética , Enfermedades de las Plantas/genética
3.
Curr Opin Plant Biol ; 74: 102380, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37187111

RESUMEN

Factors including climate change and increased global exchange are set to escalate the prevalence of plant diseases, posing an unprecedented threat to global food security and making it more challenging to meet the demands of an ever-growing population. As such, new methods of pathogen control are essential to help with the growing danger of crop losses to plant diseases. The intracellular immune system of plants utilizes nucleotide-binding leucine-rich repeat (NLR) receptors to recognize and activate defense responses to pathogen virulence proteins (effectors) delivered to the host. Engineering the recognition properties of plant NLRs toward pathogen effectors is a genetic solution to plant diseases with high specificity, and it is more sustainable than several current methods for pathogen control that frequently rely on agrochemicals. Here, we highlight the pioneering approaches toward enhancing effector recognition in plant NLRs and discuss the barriers and solutions in engineering the plant intracellular immune system.


Asunto(s)
Proteínas NLR , Plantas , Proteínas NLR/genética , Plantas/metabolismo , Inmunidad de la Planta/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Elife ; 122023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-37199729

RESUMEN

A subset of plant intracellular NLR immune receptors detect effector proteins, secreted by phytopathogens to promote infection, through unconventional integrated domains which resemble the effector's host targets. Direct binding of effectors to these integrated domains activates plant defenses. The rice NLR receptor Pik-1 binds the Magnaporthe oryzae effector AVR-Pik through an integrated heavy metal-associated (HMA) domain. However, the stealthy alleles AVR-PikC and AVR-PikF avoid interaction with Pik-HMA and evade host defenses. Here, we exploited knowledge of the biochemical interactions between AVR-Pik and its host target, OsHIPP19, to engineer novel Pik-1 variants that respond to AVR-PikC/F. First, we exchanged the HMA domain of Pikp-1 for OsHIPP19-HMA, demonstrating that effector targets can be incorporated into NLR receptors to provide novel recognition profiles. Second, we used the structure of OsHIPP19-HMA to guide the mutagenesis of Pikp-HMA to expand its recognition profile. We demonstrate that the extended recognition profiles of engineered Pikp-1 variants correlate with effector binding in planta and in vitro, and with the gain of new contacts across the effector/HMA interface. Crucially, transgenic rice producing the engineered Pikp-1 variants was resistant to blast fungus isolates carrying AVR-PikC or AVR-PikF. These results demonstrate that effector target-guided engineering of NLR receptors can provide new-to-nature disease resistance in crops.


Asunto(s)
Magnaporthe , Oryza , Resistencia a la Enfermedad/genética , Receptores Inmunológicos/metabolismo , Plantas/metabolismo , Enfermedades de las Plantas/microbiología , Magnaporthe/metabolismo , Proteínas de Plantas/química , Interacciones Huésped-Patógeno
6.
PLoS Biol ; 21(1): e3001945, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36656825

RESUMEN

Studies focused solely on single organisms can fail to identify the networks underlying host-pathogen gene-for-gene interactions. Here, we integrate genetic analyses of rice (Oryza sativa, host) and rice blast fungus (Magnaporthe oryzae, pathogen) and uncover a new pathogen recognition specificity of the rice nucleotide-binding domain and leucine-rich repeat protein (NLR) immune receptor Pik, which mediates resistance to M. oryzae expressing the avirulence effector gene AVR-Pik. Rice Piks-1, encoded by an allele of Pik-1, recognizes a previously unidentified effector encoded by the M. oryzae avirulence gene AVR-Mgk1, which is found on a mini-chromosome. AVR-Mgk1 has no sequence similarity to known AVR-Pik effectors and is prone to deletion from the mini-chromosome mediated by repeated Inago2 retrotransposon sequences. AVR-Mgk1 is detected by Piks-1 and by other Pik-1 alleles known to recognize AVR-Pik effectors; recognition is mediated by AVR-Mgk1 binding to the integrated heavy metal-associated (HMA) domain of Piks-1 and other Pik-1 alleles. Our findings highlight how complex gene-for-gene interaction networks can be disentangled by applying forward genetics approaches simultaneously to the host and pathogen. We demonstrate dynamic coevolution between an NLR integrated domain and multiple families of effector proteins.


Asunto(s)
Oryza , Receptores Inmunológicos , Receptores Inmunológicos/metabolismo , Hongos/metabolismo , Enfermedades de las Plantas/microbiología , Interacciones Huésped-Patógeno/genética , Oryza/genética , Oryza/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
J Integr Plant Biol ; 65(3): 810-824, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36178632

RESUMEN

Arms race co-evolution of plant-pathogen interactions evolved sophisticated recognition mechanisms between host immune receptors and pathogen effectors. Different allelic haplotypes of an immune receptor in the host mount distinct recognition against sequence or non-sequence related effectors in pathogens. We report the molecular characterization of the Piks allele of the rice immune receptor Pik against rice blast pathogen, which requires two head-to-head arrayed nucleotide-binding sites and leucine-rich repeat proteins. Like other Pik alleles, both Piks-1 and Piks-2 are necessary and sufficient for mediating resistance. However, unlike other Pik alleles, Piks does not recognize any known AvrPik variants of Magnaporthe oryzae. Sequence analysis of the genome of an avirulent isolate V86010 further revealed that its cognate avirulence (Avr) gene most likely has no significant sequence similarity to known AvrPik variants. Piks-1 and Pikm-1 have only two amino acid differences within the integrated heavy metal-associated (HMA) domain. Pikm-HMA interacts with AvrPik-A, -D, and -E in vitro and in vivo, whereas Piks-HMA does not bind any AvrPik variants. Characterization of two amino acid residues differing Piks-1 from Pikm-1 reveal that Piks-E229Q derived from the exchange of Glu229 to Gln229 in Piks-1 gains recognition specificity against AvrPik-D but not AvrPik-A or -E, indicating that Piks-E229Q partially restores the Pikm spectrum. By contrast, Piks-A261V derived from the exchange of Ala261 to Val261 in Piks-1 retains Piks recognition specificity. We conclude that Glu229 in Piks-1 is critical for Piks breaking the canonical Pik/AvrPik recognition pattern. Intriguingly, binding activity and ectopic cell death induction is maintained between Piks-A261V and AvrPik-D, implying that positive outcomes from ectopic assays might be insufficient to deduce its immune activity against the relevant effectors in rice and rice blast interaction.


Asunto(s)
Ascomicetos , Magnaporthe , Oryza , Alelos , Magnaporthe/fisiología , Receptores Inmunológicos/metabolismo , Oryza/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Interacciones Huésped-Patógeno
8.
Proc Natl Acad Sci U S A ; 119(43): e2210559119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36252011

RESUMEN

Exocytosis plays an important role in plant-microbe interactions, in both pathogenesis and symbiosis. Exo70 proteins are integral components of the exocyst, an octameric complex that mediates tethering of vesicles to membranes in eukaryotes. Although plant Exo70s are known to be targeted by pathogen effectors, the underpinning molecular mechanisms and the impact of this interaction on infection are poorly understood. Here, we show the molecular basis of the association between the effector AVR-Pii of the blast fungus Maganaporthe oryzae and rice Exo70 alleles OsExo70F2 and OsExo70F3, which is sensed by the immune receptor pair Pii via an integrated RIN4/NOI domain. The crystal structure of AVR-Pii in complex with OsExo70F2 reveals that the effector binds to a conserved hydrophobic pocket in Exo70, defining an effector/target binding interface. Structure-guided and random mutagenesis validates the importance of AVR-Pii residues at the Exo70 binding interface to sustain protein association and disease resistance in rice when challenged with fungal strains expressing effector mutants. Furthermore, the structure of AVR-Pii defines a zinc-finger effector fold (ZiF) distinct from the MAX (Magnaporthe Avrs and ToxB-like) fold previously described for a majority of characterized M. oryzae effectors. Our data suggest that blast fungus ZiF effectors bind a conserved Exo70 interface to manipulate plant exocytosis and that these effectors are also baited by plant immune receptors, pointing to new opportunities for engineering disease resistance.


Asunto(s)
Magnaporthe , Oryza , Resistencia a la Enfermedad , Proteínas Fúngicas/metabolismo , Interacciones Huésped-Patógeno , Magnaporthe/genética , Oryza/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/química , Plantas/metabolismo , Zinc/metabolismo
9.
PLoS Pathog ; 18(10): e1010918, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36302035

RESUMEN

In order to infect a new host species, the pathogen must evolve to enhance infection and transmission in the novel environment. Although we often think of evolution as a process of accumulation, it is also a process of loss. Here, we document an example of regressive evolution of an effector activity in the Irish potato famine pathogen (Phytophthora infestans) lineage, providing evidence that a key sequence motif in the effector PexRD54 has degenerated following a host jump. We began by looking at PexRD54 and PexRD54-like sequences from across Phytophthora species. We found that PexRD54 emerged in the common ancestor of Phytophthora clade 1b and 1c species, and further sequence analysis showed that a key functional motif, the C-terminal ATG8-interacting motif (AIM), was also acquired at this point in the lineage. A closer analysis showed that the P. mirabilis PexRD54 (PmPexRD54) AIM is atypical, the otherwise-conserved central residue mutated from a glutamate to a lysine. We aimed to determine whether this PmPexRD54 AIM polymorphism represented an adaptation to the Mirabilis jalapa host environment. We began by characterizing the M. jalapa ATG8 family, finding that they have a unique evolutionary history compared to previously characterized ATG8s. Then, using co-immunoprecipitation and isothermal titration calorimetry assays, we showed that both full-length PmPexRD54 and the PmPexRD54 AIM peptide bind weakly to the M. jalapa ATG8s. Through a combination of binding assays and structural modelling, we showed that the identity of the residue at the position of the PmPexRD54 AIM polymorphism can underpin high-affinity binding to plant ATG8s. Finally, we conclude that the functionality of the PexRD54 AIM was lost in the P. mirabilis lineage, perhaps owing to as-yet-unknown selection pressure on this effector in the new host environment.


Asunto(s)
Mirabilis , Phytophthora infestans , Solanum tuberosum , Enfermedades de las Plantas , Phytophthora infestans/genética , Especificidad del Huésped
10.
Proc Natl Acad Sci U S A ; 119(27): e2116896119, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35771942

RESUMEN

Throughout their evolution, plant nucleotide-binding leucine-rich-repeat receptors (NLRs) have acquired widely divergent unconventional integrated domains that enhance their ability to detect pathogen effectors. However, the functional dynamics that drive the evolution of NLRs with integrated domains (NLR-IDs) remain poorly understood. Here, we reconstructed the evolutionary history of an NLR locus prone to unconventional domain integration and experimentally tested hypotheses about the evolution of NLR-IDs. We show that the rice (Oryza sativa) NLR Pias recognizes the effector AVR-Pias of the blast fungal pathogen Magnaporthe oryzae. Pias consists of a functionally specialized NLR pair, the helper Pias-1 and the sensor Pias-2, that is allelic to the previously characterized Pia pair of NLRs: the helper RGA4 and the sensor RGA5. Remarkably, Pias-2 carries a C-terminal DUF761 domain at a similar position to the heavy metal-associated (HMA) domain of RGA5. Phylogenomic analysis showed that Pias-2/RGA5 sensor NLRs have undergone recurrent genomic recombination within the genus Oryza, resulting in up to six sequence-divergent domain integrations. Allelic NLRs with divergent functions have been maintained transspecies in different Oryza lineages to detect sequence-divergent pathogen effectors. By contrast, Pias-1 has retained its NLR helper activity throughout evolution and is capable of functioning together with the divergent sensor-NLR RGA5 to respond to AVR-Pia. These results suggest that opposite selective forces have driven the evolution of paired NLRs: highly dynamic domain integration events maintained by balancing selection for sensor NLRs, in sharp contrast to purifying selection and functional conservation of immune signaling for helper NLRs.


Asunto(s)
Evolución Molecular , Magnaporthe , Proteínas NLR , Oryza , Enfermedades de las Plantas , Proteínas de Plantas , Receptores Inmunológicos , Ligamiento Genético , Interacciones Huésped-Patógeno/inmunología , Magnaporthe/genética , Magnaporthe/patogenicidad , Proteínas NLR/genética , Proteínas NLR/inmunología , Oryza/inmunología , Oryza/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/inmunología , Proteínas Inhibidoras de STAT Activados/genética , Proteínas Inhibidoras de STAT Activados/inmunología , Receptores Inmunológicos/genética , Receptores Inmunológicos/inmunología
11.
Nat Commun ; 13(1): 1607, 2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-35338132

RESUMEN

The wild relatives and progenitors of wheat have been widely used as sources of disease resistance (R) genes. Molecular identification and characterization of these R genes facilitates their manipulation and tracking in breeding programmes. Here, we develop a reference-quality genome assembly of the wild diploid wheat relative Aegilops sharonensis and use positional mapping, mutagenesis, RNA-Seq and transgenesis to identify the stem rust resistance gene Sr62, which has also been transferred to common wheat. This gene encodes a tandem kinase, homologues of which exist across multiple taxa in the plant kingdom. Stable Sr62 transgenic wheat lines show high levels of resistance against diverse isolates of the stem rust pathogen, highlighting the utility of Sr62 for deployment as part of a polygenic stack to maximize the durability of stem rust resistance.


Asunto(s)
Aegilops , Basidiomycota , Aegilops/genética , Basidiomycota/genética , Resistencia a la Enfermedad/genética , Genes de Plantas/genética , Fitomejoramiento , Enfermedades de las Plantas/genética , Triticum/genética
12.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34880132

RESUMEN

Plants use intracellular nucleotide-binding domain (NBD) and leucine-rich repeat (LRR)-containing immune receptors (NLRs) to detect pathogen-derived effector proteins. The Arabidopsis NLR pair RRS1-R/RPS4 confers disease resistance to different bacterial pathogens by perceiving the structurally distinct effectors AvrRps4 from Pseudomonas syringae pv. pisi and PopP2 from Ralstonia solanacearum via an integrated WRKY domain in RRS1-R. How the WRKY domain of RRS1 (RRS1WRKY) perceives distinct classes of effector to initiate an immune response is unknown. Here, we report the crystal structure of the in planta processed C-terminal domain of AvrRps4 (AvrRps4C) in complex with RRS1WRKY Perception of AvrRps4C by RRS1WRKY is mediated by the ß2-ß3 segment of RRS1WRKY that binds an electronegative patch on the surface of AvrRps4C Structure-based mutations that disrupt AvrRps4C-RRS1WRKY interactions in vitro compromise RRS1/RPS4-dependent immune responses. We also show that AvrRps4C can associate with the WRKY domain of the related but distinct RRS1B/RPS4B NLR pair, and the DNA-binding domain of AtWRKY41, with similar binding affinities and how effector binding interferes with WRKY-W-box DNA interactions. This work demonstrates how integrated domains in plant NLRs can directly bind structurally distinct effectors to initiate immunity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/microbiología , Proteínas Bacterianas/metabolismo , Proteínas de Plantas/metabolismo , Pseudomonas syringae/metabolismo , Arabidopsis/inmunología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Bacterianas/genética , Muerte Celular , Clonación Molecular , ADN de Plantas , Regulación de la Expresión Génica de las Plantas/inmunología , Modelos Moleculares , Mutación , Proteínas de Plantas/genética , Conformación Proteica , Pseudomonas syringae/inmunología , Nicotiana
13.
Elife ; 102021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34783652

RESUMEN

Cooperation between receptors from the nucleotide-binding, leucine-rich repeats (NLR) superfamily is important for intracellular activation of immune responses. NLRs can function in pairs that, upon pathogen recognition, trigger hypersensitive cell death and stop pathogen invasion. Natural selection drives specialization of host immune receptors towards an optimal response, whilst keeping a tight regulation of immunity in the absence of pathogens. However, the molecular basis of co-adaptation and specialization between paired NLRs remains largely unknown. Here, we describe functional specialization in alleles of the rice NLR pair Pik that confers resistance to strains of the blast fungus Magnaporthe oryzae harbouring AVR-Pik effectors. We revealed that matching pairs of allelic Pik NLRs mount effective immune responses, whereas mismatched pairs lead to autoimmune phenotypes, a hallmark of hybrid necrosis in both natural and domesticated plant populations. We further showed that allelic specialization is largely underpinned by a single amino acid polymorphism that determines preferential association between matching pairs of Pik NLRs. These results provide a framework for how functionally linked immune receptors undergo co-adaptation to provide an effective and regulated immune response against pathogens. Understanding the molecular constraints that shape paired NLR evolution has implications beyond plant immunity given that hybrid necrosis can drive reproductive isolation.


Asunto(s)
Ascomicetos/fisiología , Proteínas NLR/genética , Oryza/genética , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/genética , Receptores Inmunológicos , Alelos , Interacciones Huésped-Patógeno/inmunología , Proteínas NLR/inmunología , Oryza/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Proteínas de Plantas/inmunología , Receptores Inmunológicos/metabolismo
14.
PLoS Pathog ; 17(11): e1009957, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34758051

RESUMEN

Accelerated gene evolution is a hallmark of pathogen adaptation and specialization following host-jumps. However, the molecular processes associated with adaptive evolution between host-specific lineages of a multihost plant pathogen remain poorly understood. In the blast fungus Magnaporthe oryzae (Syn. Pyricularia oryzae), host specialization on different grass hosts is generally associated with dynamic patterns of gain and loss of virulence effector genes that tend to define the distinct genetic lineages of this pathogen. Here, we unravelled the biochemical and structural basis of adaptive evolution of APikL2, an exceptionally conserved paralog of the well-studied rice-lineage specific effector AVR-Pik. Whereas AVR-Pik and other members of the six-gene AVR-Pik family show specific patterns of presence/absence polymorphisms between grass-specific lineages of M. oryzae, APikL2 stands out by being ubiquitously present in all blast fungus lineages from 13 different host species. Using biochemical, biophysical and structural biology methods, we show that a single aspartate to asparagine polymorphism expands the binding spectrum of APikL2 to host proteins of the heavy-metal associated (HMA) domain family. This mutation maps to one of the APikL2-HMA binding interfaces and contributes to an altered hydrogen-bonding network. By combining phylogenetic ancestral reconstruction with an analysis of the structural consequences of allelic diversification, we revealed a common mechanism of effector specialization in the AVR-Pik/APikL2 family that involves two major HMA-binding interfaces. Together, our findings provide a detailed molecular evolution and structural biology framework for diversification and adaptation of a fungal pathogen effector family following host-jumps.


Asunto(s)
Evolución Molecular , Interacciones Huésped-Patógeno , Magnaporthe/fisiología , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Polimorfismo Genético , Sustitución de Aminoácidos , Oryza/metabolismo , Filogenia , Proteínas de Plantas/genética , Virulencia
15.
Elife ; 102021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34288868

RESUMEN

A subset of plant NLR immune receptors carry unconventional integrated domains in addition to their canonical domain architecture. One example is rice Pik-1 that comprises an integrated heavy metal-associated (HMA) domain. Here, we reconstructed the evolutionary history of Pik-1 and its NLR partner, Pik-2, and tested hypotheses about adaptive evolution of the HMA domain. Phylogenetic analyses revealed that the HMA domain integrated into Pik-1 before Oryzinae speciation over 15 million years ago and has been under diversifying selection. Ancestral sequence reconstruction coupled with functional studies showed that two Pik-1 allelic variants independently evolved from a weakly binding ancestral state to high-affinity binding of the blast fungus effector AVR-PikD. We conclude that for most of its evolutionary history the Pik-1 HMA domain did not sense AVR-PikD, and that different Pik-1 receptors have recently evolved through distinct biochemical paths to produce similar phenotypic outcomes. These findings highlight the dynamic nature of the evolutionary mechanisms underpinning NLR adaptation to plant pathogens.


Asunto(s)
Hongos/inmunología , Oryza/genética , Oryza/inmunología , Enfermedades de las Plantas/inmunología , Receptores Inmunológicos/metabolismo , Alelos , Genes de Plantas/genética , Genotipo , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Metales Pesados , Modelos Moleculares , Filogenia , Enfermedades de las Plantas/microbiología , Proteínas de Plantas , Dominios Proteicos , Alineación de Secuencia , Análisis de Secuencia de Proteína
16.
PLoS Pathog ; 17(3): e1009368, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33647072

RESUMEN

Arms race co-evolution drives rapid adaptive changes in pathogens and in the immune systems of their hosts. Plant intracellular NLR immune receptors detect effectors delivered by pathogens to promote susceptibility, activating an immune response that halts colonization. As a consequence, pathogen effectors evolve to escape immune recognition and are highly variable. In turn, NLR receptors are one of the most diverse protein families in plants, and this variability underpins differential recognition of effector variants. The molecular mechanisms underlying natural variation in effector recognition by NLRs are starting to be elucidated. The rice NLR pair Pik-1/Pik-2 recognizes AVR-Pik effectors from the blast fungus Magnaporthe oryzae, triggering immune responses that limit rice blast infection. Allelic variation in a heavy metal associated (HMA) domain integrated in the receptor Pik-1 confers differential binding to AVR-Pik variants, determining resistance specificity. Previous mechanistic studies uncovered how a Pik allele, Pikm, has extended recognition to effector variants through a specialized HMA/AVR-Pik binding interface. Here, we reveal the mechanistic basis of extended recognition specificity conferred by another Pik allele, Pikh. A single residue in Pikh-HMA increases binding to AVR-Pik variants, leading to an extended effector response in planta. The crystal structure of Pikh-HMA in complex with an AVR-Pik variant confirmed that Pikh and Pikm use a similar molecular mechanism to extend their pathogen recognition profile. This study shows how different NLR receptor alleles functionally converge to extend recognition specificity to pathogen effectors.


Asunto(s)
Ascomicetos/metabolismo , Interacciones Huésped-Patógeno/fisiología , Enfermedades de las Plantas/microbiología , Receptores Inmunológicos/metabolismo , Alelos , Interacciones Huésped-Patógeno/inmunología , Magnaporthe/metabolismo , Proteínas NLR/metabolismo , Oryza , Proteínas de Plantas/metabolismo , Polimorfismo Genético/genética
17.
J Biol Chem ; 296: 100371, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33548226

RESUMEN

Microbial plant pathogens secrete effector proteins, which manipulate the host to promote infection. Effectors can be recognized by plant intracellular nucleotide-binding leucine-rich repeat (NLR) receptors, initiating an immune response. The AVR-Pik effector from the rice blast fungus Magnaporthe oryzae is recognized by a pair of rice NLR receptors, Pik-1 and Pik-2. Pik-1 contains a noncanonical integrated heavy-metal-associated (HMA) domain, which directly binds AVR-Pik to activate plant defenses. The host targets of AVR-Pik are also HMA-domain-containing proteins, namely heavy-metal-associated isoprenylated plant proteins (HIPPs) and heavy-metal-associated plant proteins (HPPs). Here, we demonstrate that one of these targets interacts with a wider set of AVR-Pik variants compared with the Pik-1 HMA domains. We define the biochemical and structural basis of the interaction between AVR-Pik and OsHIPP19 and compare the interaction to that formed with the HMA domain of Pik-1. Using analytical gel filtration and surface plasmon resonance, we show that multiple AVR-Pik variants, including the stealthy variants AVR-PikC and AVR-PikF, which do not interact with any characterized Pik-1 alleles, bind to OsHIPP19 with nanomolar affinity. The crystal structure of OsHIPP19 in complex with AVR-PikF reveals differences at the interface that underpin high-affinity binding of OsHIPP19-HMA to a wider set of AVR-Pik variants than achieved by the integrated HMA domain of Pik-1. Our results provide a foundation for engineering the HMA domain of Pik-1 to extend binding to currently unrecognized AVR-Pik variants and expand disease resistance in rice to divergent pathogen strains.


Asunto(s)
Ascomicetos/genética , Resistencia a la Enfermedad/inmunología , Alelos , Ascomicetos/metabolismo , Ascomicetos/patogenicidad , Resistencia a la Enfermedad/genética , Interacciones Huésped-Patógeno/inmunología , Magnaporthe/inmunología , Modelos Moleculares , Proteínas NLR/metabolismo , Oryza/genética , Oryza/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo
18.
PLoS One ; 15(9): e0238616, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32931489

RESUMEN

Plant NLR immune receptors are multidomain proteins that can function as specialized sensor/helper pairs. Paired NLR immune receptors are generally thought to function via negative regulation, where one NLR represses the activity of the second and detection of pathogen effectors relieves this repression to initiate immunity. However, whether this mechanism is common to all NLR pairs is not known. Here, we show that the rice NLR pair Pikp-1/Pikp-2, which confers resistance to strains of the blast pathogen Magnaporthe oryzae (syn. Pyricularia oryzae) expressing the AVR-PikD effector, functions via receptor cooperation, with effector-triggered activation requiring both NLRs to trigger the immune response. To investigate the mechanism of Pikp-1/Pikp-2 activation, we expressed truncated variants of these proteins, and made mutations in previously identified NLR sequence motifs. We found that any domain truncation, in either Pikp-1 or Pikp-2, prevented cell death in the presence of AVR-PikD, revealing that all domains are required for activity. Further, expression of individual Pikp-1 or Pikp-2 domains did not result in cell death. Mutations in the conserved P-loop and MHD sequence motifs in both Pikp-1 and Pikp-2 prevented cell death activation, demonstrating that these motifs are required for the function of the two partner NLRs. Finally, we showed that Pikp-1 and Pikp-2 associate to form homo- and hetero-complexes in planta in the absence of AVR-PikD; on co-expression the effector binds to Pikp-1 generating a tri-partite complex. Taken together, we provide evidence that Pikp-1 and Pikp-2 form a fine-tuned system that is activated by AVR-PikD via receptor cooperation rather than negative regulation.


Asunto(s)
Proteínas NLR/metabolismo , Oryza/citología , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Muerte Celular , Proteínas NLR/química , Proteínas de Plantas/química , Unión Proteica , Dominios Proteicos
19.
J Biol Chem ; 295(44): 14916-14935, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-32816993

RESUMEN

Plant diseases caused by pathogens and pests are a constant threat to global food security. Direct crop losses and the measures used to control disease (e.g. application of pesticides) have significant agricultural, economic, and societal impacts. Therefore, it is essential that we understand the molecular mechanisms of the plant immune system, a system that allows plants to resist attack from a wide variety of organisms ranging from viruses to insects. Here, we provide a roadmap to plant immunity, with a focus on cell-surface and intracellular immune receptors. We describe how these receptors perceive signatures of pathogens and pests and initiate immune pathways. We merge existing concepts with new insights gained from recent breakthroughs on the structure and function of plant immune receptors, which have generated a shift in our understanding of cell-surface and intracellular immunity and the interplay between the two. Finally, we use our current understanding of plant immunity as context to discuss the potential of engineering the plant immune system with the aim of bolstering plant defenses against disease.


Asunto(s)
Plantas/inmunología , Receptores Inmunológicos/metabolismo , Proteínas NLR/metabolismo , Enfermedades de las Plantas/inmunología , Plantas/metabolismo , Transducción de Señal
20.
New Phytol ; 227(2): 326-333, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32239533

RESUMEN

Over the past decade, tremendous progress has been made in plant pathology, broadening our understanding of how pathogens colonize their hosts. To manipulate host cell physiology and subvert plant immune responses, pathogens secrete an array of effector proteins. A co-evolutionary arms-race drives the pathogen to constantly reinvent its effector repertoire to undermine plant immunity. In turn, hosts develop novel immune receptors to maintain effector recognition and mount defences. Understanding how effectors promote disease and how they are perceived by the plant's defence network persist as major subjects in the study of plant-pathogen interactions. Here, we focus on recent advances (over roughly the last two years) in understanding structure/function relationships in effectors from bacteria and filamentous plant pathogens. Structure/function studies of bacterial effectors frequently uncover diverse catalytic activities, while structure-informed similarity searches have enabled cataloguing of filamentous pathogen effectors. We also suggest how such advances have informed the study of plant-pathogen interactions.


Asunto(s)
Interacciones Huésped-Patógeno , Enfermedades de las Plantas , Bacterias , Inmunidad de la Planta , Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...